
Meghna Talari: meghnatalari@gmail.com

CODE2VEC Based Cognitive Agent System to Retrieve Relevant
Code Component from Repository

Meghna Talari1, Krishna Chythanya N2, and C.R.K Reddy3
1PG Scholar, Gokaraju Rangaraju Institute of Engineering and Technology, India
2Asst. Professor, Department of CSE, Gokaraju Rangaraju Institute of Engineering and Technology, India
3Professor, Department of CSE, MGIT-Hyd, India

Abstract: The cognitive agent system helps to retrieve most relevant code component by introducing latest
techniques. In this paper the authors used latest approach of code embedding which undergoes code2vec
tokenization model by tokenizing and converting the code components present in the dataset into a numeric
representation to create a input for neural network environment and also implemented cosine similarity
matching technique to acquire the relevancy and perform retrieval of code component.

1. Introduction

The growth of code component reusability had increased
with most of the developers or end users majorly browse
for the required code components in the internet, as it is
providing many open source software code components.
The user generally enters query in natural language and
get plenty of results among which the relevancy of
required code component is less, as it contains huge
amount of noisy data than relevant data. To overcome
this problem the authors introduced a cognitive agent
system to retrieve most relevant code component from
the repository. As per the work done to implement the
concept the authors made use of a latest approach called
Code2Vec. This is a neural embedding process of
converting the code components into numerical
representation called vectors. According to Piyush Arora
etal[1], The conversion of code component to vectors
can be done in three ways - one is general code as
vectors in which the spaces or new lines and stop words
are eliminated using tokenizer, another one is
tokenization in which it provides the lexical scanner for
the code components to convert into vectors, and last one
is AST(abstract structure tree) in which the code
components are separated depending on their
relationship and represented in the form of a tree. In this
work natural language processing is used to perform the
retrieval. The code2vec is mainly used to predict the
method names. With an idea of fetching the method or
code snippet of a particular method, it was decided to
implement Code2vec concept as it was proven as
effective code embedding for predicting the methods. As
per Hong jin kang[2], they proposed token embedding’s
by code2vec to represent the source code in three
downstream tasks as code authorship identification, code
clones detection and code comment generation but
resulted with a thread of not generalizing to other tasks.

By considering these two papers the authors decided to
implement code2vec for retrieval process using
tokenization. The cognitive agent system has
implemented cosine similarity matching technique to
fetch the most accurate code component from the
repository - as per the Tim vor der Brick etal[4], they
have calculated many similarity matching models and
demonstrated cosine similarity as most accurate
especially on large dataset. By analyzing piece of
writings available, the authors have decided to
implement a cognitive system which need to be user
friendly, get accurate results and gives reusable code
components.

 The vectorization idea is implemented as it reduces the
complexity and increases the quality of results. The
authors want to develop a user friendly system hence,
implemented using “tkinter” to create a user interface
and the query which the user enters can be in any
random combination to get accurate results. The user
input is a combination of features of code components
required.

2. Methodology

The author has introduced embedding technique called
Code2Vec in which the code snippets from the dataset
will be converted into vectors by using tokenization
method.

For finding the similarity, the author has used cosine
similarity technique which can give the best results.

The retrieval is performed to get relevant code snippet
by combining both the techniques.

2.1 Steps followed

Step 1: User uploads the data set into the system

E3S Web of Conferences 184, 01064 (2020)	 https://doi.org/10.1051/e3sconf/202018401064
ICMED 2020

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Step 2: The data (code components) is internally pre-
processed

Step 3: The pre-processed data is applied to tokenization
method

Step 4: The system asks user to enter the query which is
to be retrieved

Step 5: Internally the cosine similarity between the data
set and query entered is calculated

 If(result) = 1

 “Query found”

 If(result) = 0

 “Query not found”

Step6 : The most relevant code component is retrieved
from the database if the result is 0 or system asks to re-
enter the query

Step7 : The relevancy with other files is also shown

Step 8 : User can view the graph of query entered and
similarity present in the database.

3. Experimentation and Results

Procedure follows five modules 1) Uploading the
dataset, 2) Pre-processing the dataset, 3) Code2Vec 4)
Giving input and 5) Retrieving the code component.

The first step is to upload the dataset for pre- processing
where each and every code component from the dataset
is analyzed by the agent, the count of dataset is viewed
and then it is applied on second module in which the
whole dataset containing the code components is
embedded by applying embedding technique then the
role of user takes place by giving query as an input
which is also converted as vector internally and finally
perform comparison is done by calculating the cosine
similarity between them.

The retrieval is performed based on cosine similarity
score after which the acquired highest matching score
document is retrieved.

In the below architecture the overview of the cognitive
agent system developed is given. The Qv1 is query
entered by the user and Cv1, Cv2,…Cvn are the dataset
which are embedded by performing tokentization and v
indicated the vector.

Fig. 1. Overview of cognitive agent system developed

3.1 Uploading Dataset

Authors have collected the dataset of many
programming languages like Java, C language, Python,
C# and C++. The process of uploading is done on user
interest as the users can upload depending on their
requirement to add components when they are not
available in repository, if user wants any code snippet of
any particular programming language then he can upload
that directory to the system. For example, if user needs
code snippet on python language then he can upload
python code files. If user wants collection of code
snippets on any language then he can upload a folder
named train in which the programming components of
the language are collected in one folder. In this
experiment case we used a train folder that has more
than 300 code components including simple code snippet
to project functions.

3.2 Pre-processing Dataset

The raw dataset need to be uploaded in the cognitive
system in which the raw data is analyzed by the agent to
apply embedding. Each and every code component data
from the directory is analyzed and displays the number
of components present in the repository which the user
has uploaded.

3.3 Code2Vec

This is the process of converting the code components
into vectors by performing tokenization technique.
Representation in the form of vectors is also known as
neural embedding. The dataset uploaded by the user is
analyzed and embedded by performing tokenization. In
lexical analysis, this technique eliminates the stop words
including extra spaces, new lines and breaking a stream

2

E3S Web of Conferences 184, 01064 (2020)	 https://doi.org/10.1051/e3sconf/202018401064
ICMED 2020

of code into words, symbols, phrases or other
meaningful elements called tokens by importing NLTK
corpus and displays the count of each vector in the
dataset as shown in the following figure.2.

Fig.2 Code to Tokens

In the above figure, the tokens and the count of the
tokens are displayed. The numerical representation can
make the retrieval process more effective by giving
qualitative results. Embedding can help the system to
reduce the complexity of the data by representing in the
form of vectors

3.4 Giving Input and Retrieval process

The input can be given in the form of features of more
than one word, for example if user needs code snippet of
“implementation of recursive bubble sort”, rather than
typing the whole sentence in natural language query the
user can enter only features like “recursive bubble” or
“bubble recursive sort” or “bubble sort recursive”.
Presence of agent helps the system to analyze the query
and convert the query into vector internally.

To retrieve the component which satisfies the query, the
agent performs cosine similarity measure in which the
Euclidean Distance between the vectors of dataset with
the vector value of user entered query is calculated. To
compute cosine similarity, it considers the vector values
in each document and vector values of the query. The
result is acquired in the form of matrix and gives
similarity score for it. The following image is the basic
calculation of cosine similarity measure from [5].

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐱⃗𝐱 .𝐲𝐲
||𝐱𝐱⃗⃗⃗⃗ ⃗||𝐲𝐲⃗⃗⃗⃗ ⃗|| = ∑ 𝒙𝒙𝒊𝒊𝒚𝒚𝒊𝒊𝑛𝑛

1

√∑ 𝑥𝑥𝑖𝑖
2√∑ 𝑏𝑏𝑏𝑏𝑖𝑖

2𝑛𝑛
1

𝑛𝑛
1

 (1)

Where, x->.y-> = ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑎𝑎1𝑦𝑦1 + 𝑥𝑥𝑦𝑦2 + ⋯+𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛
𝑛𝑛
1 is

dot product of the two vectors (query vector, and code
component vector).

4. Experiment results

Concentrating on the score acquired by cosine similarity
measure, the maximum score is considered as most
relevant one and retrieved from the repository in the
form of text document to make it user friendly. The
query entered by the user is compared with all the

programs present in the repository by measuring its
similarity, the programs which acquire match is
displayed with its title name and predicted score as
shown in the below figure.3

Fig.3 Predicted score

As per the above figure, program named bubblesort.txt is
retrieved as it has near Euclidean Distance. Here the
advantage is that we not need to go through the whole
program of bubble sort, only the relevant code snippet of
bubble sort function is retrieved as a text document as
shown in the below figure.4.

Fig.4 Retrieved code snippet

The representation of the results has displayed in the
below graph of total code components in the repository
and the components which found similarity.

Fig. 5 Graph of total components Vs Predicted components

3

E3S Web of Conferences 184, 01064 (2020)	 https://doi.org/10.1051/e3sconf/202018401064
ICMED 2020

Table.1 Confusion matrix

Total=359
components;
20 queries.

Classified as
Existing

Classified as
 Non
Existing

Existing
Components(12)

12 (TP) 1(FN)

Non Existing
Components(4)

3(FP) 4(TN)

By considering the above Table 1 - Accuracy, Precision,
Recall are calculated.

Accuracy = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 = 16/16=>100%

Precision = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 = 12/15=0.8=>80%

Recall = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 12/13= 0.923016923=>92.3

Our experiment results on 350 component repository
where 20 user queries were used shows the values as
given in Confusion Matrix table 1. above where in we
considered queries for 12 existing components and
deliberately given 4 queries for non existing
components. True Positive(TP),True Negative(TN),
False Positive(FP), False Negative(FN) values found are
recorded as in matrix above. We could get an Accuracy
of 100% with our model and a Precision of 80%.

5. Conclusion

To increase the reuse of software component, software
component repositories and to improve the relevancy of
the retrieval process - the authors have used Code2Vec
concept in which the dataset is embedded by
implementing tokenization technique which converts the
whole code components from the dataset into vectors.
The cognitive system attained success in retrieving the
most relevant code snippet by comparing their cosine
similarity measure and made it user friendly by abetting
in the form of text document.

6. Future Work

As an extension authors would like to work with both
Code2Vec using tokenization technique or AST(
abstract syntax tree) and Word2vec using skip gram
technique or CBOW(continuous bag of words) concepts
giving more deep attention on neural network, to
achieve better results. More models can be tried to
improve the Precision and Recall of the system.

References

1. DavidAzcona, Piyush Arora, I-Han Hsiao, Alan
Semeaton, “user2code2vec:Embeddings
forbProfiling Students Based on Distributional
Representations of Source Code”, In The 9th
International Learning Analytics & Knowledge
Conference (LAK19), Mar(2019), Tempe, AZ,
USA.ACM,NewYork,NY, USA,10pages.
https://doi.org/10.1145/3303772.3303813

2. Hong Jin Kang, Tegawende F. Bissyande, David
Lo, “Assessing the Generalizability of code2vec
Token Embeddings”,34th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), 11-15 Nov
(2019),https://ieeexplore.ieee.org/abstract/documen
t/8952475

3. Bart Theeten, Frederik Vandeputte, TomVan
Cutsem, “Import2vec Learning Embeddings for
Software Libraries”,Proceedings of the 16th
International Conference on Mining Software
Repositories, May (2019) ,
https://www.researchgate.net/publication/33230053
8_Import2vec_-
_Learning_Embeddings_for_Software_Libraries

4. TimvorderBr¨uck, Mare pouly, “Text Similarity
Estimation Basedon Word Embeddings and Matrix
Norms for Targeted Marketing”, Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1, june
(2019), https://www.aclweb.org/anthology/N19-
1181

5. https://www.machinelearningplus.com/nlp/cosine-
similarity/

4

E3S Web of Conferences 184, 01064 (2020)	 https://doi.org/10.1051/e3sconf/202018401064
ICMED 2020

