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A B S T R A C T   

Energy conservation is the primary task in Wireless Sensor Networks (WSNs) as these tiny sensor nodes are the 
backbone of today’s Internet of Things (IoT) applications. These nodes rely exclusively on battery power to 
maneuver in hazardous environments. So, there is a requirement to study and design efficient, robust commu-
nication protocols to handle the challenges of the WSNs to make the network operational for a long time. 
Although traditional technologies solve many issues in WSNs, it may not derive an accurate mathematical model 
for predicting system behavior. So, some challenging tasks like routing, data fusion, localization, and object 
tracking are handled by low complexity mathematical models to define system behavior. In this paper, an effort 
has been made to provide a big outlook to the current “researchers” on machine learning techniques that have 
been employed to handle various issues in WSNs, and special attention has been given to routing problems.   

1. Introduction 

A WSN is a collection of a large number of sensor nodes, usually 
deployed in remote areas to monitor environmental parameters like 
temperature, humidity, moisture, etc. The sensor nodes are equipped 
with various types of sensors like acoustic, pressure, motion, image, 
chemical, weather, pressure, temperature, optical sensors, etc. Due to 
this diversity of sensor nodes, the applications of WSNs are huge in a 
range that starts with healthcare, military, defense, agriculture to our 
day to day life. Despite huge applications, WSN faces many typical 
challenges like limited energy sources, computational speed, memory, 
and limited communication bandwidth, making the sensor network 
degrade in performance and decreasing the network lifetime [1]. 
Developing different algorithms for different applications is quite a 
challenging task. In particular, the designer of WSNs must emphasize on 
various issues like data aggregation, clustering, routing, localization, 
fault detection, task scheduling, event tracking, etc. The various chal-
lenges and issues in WSNs are illustrated in Fig. 1. The complete 
description is given in section III. Among all the tasks, routing is one of 
the important tasks as major percentage of the energy consumption 
takes place while routing the data packet from the source node to the 
destination either through a single hop or multi-hop fashion. While 
routing the data, the sensor network designer must focus on all the 
sensor node’s energy consumption issues to keep the network operating 

for a long time. Every routing protocol has its own characteristics and 
specifications based on network applications and structure. 

Machine Learning (ML) is a part of Artificial Intelligence introduced 
in the late 1950s. Over the period, it evolved and moved towards al-
gorithms that could computationally feasible and robust enough to 
handle different problems like classifications, clustering, regression, and 
optimization in the field of medical, engineering, and computing. ML is 
one of the most exciting and influential technologies in today’s world. 
ML provides computer systems with the ability to learn automatically 
without human involvement and take action accordingly. It creates a 
model by analyzing complex data automatically, quickly, and accu-
rately. ML has the ability to learn from the generalized structure to 
provide a general solution to improve system performance. Because of 
the diversified applications, it is applied in various scientific fields of 
medical, engineering, and computing like manual data entry, automatic 
detection of spam, medical diagnosis, image recognition, data cleansing, 
noise reduction [144,145], etc. Recent studies prove that ML has been 
applied to solve many issues in WSNs. Applying ML in WSNs not only 
improves the system performance but also reduces the complex tasks 
like reprogramming, accessing the large amount of data manually, and 
extracting useful information from the data. So, ML techniques are 
extremely helpful for fetching large amounts of data and extract useful 
information [2–4]. For more clarity, the requirements of Machine 
Learning Techniques in WSNs are briefly explained in the below 
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paragraph. 

1.1. Requirements of Machine Learning Techniques in WSN  

(1) Energy Harvesting: It provides an advanced prediction of optimal 
energy consumption to be invested in performing a sensor 
network well in an energy-constrained environment.  

(2) Target area coverage problem: This is another problem in WSN 
where ML has been focused. For the target coverage problem, ML 
plays a major role in finding the optimal number of sensor nodes 
to cover the target area.  

(3) Localization Problem: WSNs are deployed under the water or any 
type of dangerous environment. The location of nodes might 
change due to external or internal factors. ML can help with ac-
curate localization.  

(4) Faulty node detection: It is assumed that sensor nodes are faulty 
most of the time. ML can help to detect the faulty sensor nodes 
and improve system performance.  

(5) Routing: Routing plays a significant role in improving network 
performance by forwarding the data packet in the proper direc-
tion. Different machine learning techniques are employed to 
handle the dynamics of routing mechanisms  

(6) Different Levels of data abstractions: The growing demand for WSN 
applications necessitate integrating WSNs with IoT, cyber- 
physical systems (CPS), machine to machine (M2M) communi-
cations, etc. So, intelligent decision-making systems must be 
developed that can be achieved through Machine Learning 
techniques. 

1.2. Limitations of Machine Learning in WSNs 

Despite several advantages of ML techniques, there are few limita-
tions of ML techniques to apply in WSNs. The reason is WSNs always 
operate in a constrained environment such as limited battery power, 
little memory, and limited computational capacity. Learning, by 
example, requires large data sets of samples. WSNs consume a sub-
stantial amount of energy while predicting an accurate hypothesis and 
extracting the features of data samples. So, the designer of WSNs must 
balance the trade-off between the algorithm’s computational complexity 
and learned model accuracy. 

1.3. Search Criteria Employed  

• First, good brands Journal like IEEE, Elsevier, and Springer with 
well-cited papers are chosen, where ML techniques are applied to 
WSNs. 

• Second, few good “international conference papers” with high cita-
tions are referred.  

• Third, we have excluded all other issues in WSNs and considered 
only routing issues solved by ML algorithms. It is nearly impossible to 
accommodate all the research papers w.r.t routing in a single review 

document. So, year-wise, few articles are selected, where critical 
routing issues are solved in WSNs. As per our knowledge, we have 
incorporated a considerable number of studies to develop a good 
survey paper. 

1.4. Our Contributions 

The survey in [126] focuses on Machine Learning techniques to solve 
various issues in WSNs, covers the period from 2002 to 2013, and the 
study in [137] covers the survey from 2014 to 2018. But, it is found from 
the existing research that most of the reviews focus on the overall issues 
in WSNs using ML techniques, and there is a lack of good survey 
explicitly presenting routing issues in WSNs by employing ML 
techniques.  

• In our survey, we have briefly discussed ML techniques used to solve 
the general problems in WSNs.  

• Further, we have highlighted the various issues in three categories 
that give a warm touch up for a better understanding of routing is-
sues in WSNs.  

• Finally, we have focused exclusively on routing issues in WSNs that 
have been solved by ML techniques covering the period up to 2020. 
In addition to this, we have discussed the advantages and limitations 
of ML-based routing in WSNs and discuss the open issues for future 
research. Our contribution has been illustrated in Fig. 2 

The rest of the paper is partitioned as follows. Section 2 gives an 
overview of machine learning techniques used in WSNs, and Section 3 
discusses the specific challenges of WSNs handled by Machine Learning 
techniques. Section 4 presents ML techniques used to solve routing 
problems in WSNs. Conclusion and Future Work is discussed in Section 
5. 

2. Machine learning techniques in WSNs: An brief overview 

In this section, we have given an overview of various machine 
learning techniques based on their learning behaviors for a better un-
derstanding of ML techniques in WSNs. Broadly, it can be classified into 
five categories based on their learning principles. These are listed as 
SUPERVISED, SEMI-SUPERVISED, UNSUPERVISED, REINFORCEMENT 
LEARNING TECHNIQUES, and EVOLUTIONARY COMPUTING ALGO-
RITHMS [5]. The overall classification of machine learning techniques 
in WSN is presented in Fig. 3. Further, the routing issues handled by 

WSNs Challenges 

Functional 
Challenges 

Security and 
Other Challenges 

Future 
Challenges 

Fig. 1. Classification of WSNs Challenges.  
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Fig. 2. Contributions of the paper.  
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machine learning techniques are extracted from Fig. 3 and illustrated in 
Fig. 4. The complete description is given in Section IV for easy 
demonstration. 

2.1. Unsupervised learning 

Unsupervised learning is a training algorithm subset of AI that uses 
the information which is neither classified nor labeled and process 
without any human guidance. It can solve more complex problems than 
supervised learning. Unsupervised learning can figure out similar data 
and partition it into clusters with add on features to filter undesired data 

samples. Mostly unsupervised learning is used in WSNs to solve con-
nectivity problems[6], data aggregation, clustering, routing [7–10], and 
other issues like anomaly detection, etc. For example, K-means clus-
tering, hierarchical clustering, and fuzzy-c means are used for WSN 
clustering, and dimensionality reduction also comes under unsupervised 
learning that includes Principal component analysis (PCA), Independent 
Component Analysis (ICA), and Singular value decomposition (SVD). 

2.1.1. K-means clustering 
K-means clustering is an extremely popular and simplest algorithm 

that divides the data points into ‘k’ clusters or groups. A larger value of 

Fig. 3. Classification of Machine Learning techniques applied in WSN.  

Fig. 4. Routing issues in WSNs handled by ML Techniques.  
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‘k’ tends to smaller groups, whereas the smaller value of ‘k’ implies 
larger groups. In K-means, grouping in each cluster is identified by 
creating a centroid for that cluster. These centroids act as the heart of the 
clusters, which capture the points closest to them and include them in 
the cluster. The points are allocated to these clusters based on Euclidean 
distance to their centroids. The mean of every cluster is recomputed as 
new centroids, and the operation continues until the optimal cluster 
centroids are found. The K-Means follows the principle of minimized 
centroid as given in Eq. (2). K-means are mostly used in routing for 
selecting optimal cluster heads (CHs) in WSNs [7–9]. 

Ek− means =
1
C

∑c

k=1

∑

x∈Qk

‖x − Ck‖
2 (1)  

where C implies the number of clusters, Qk identifies the Kth cluster, Ck 
defines the centroid of cluster Qk. 

2.1.2. Hierarchical clustering 
In general, hierarchical clustering is meant for more massive data 

sets. Similar data objects form the cluster, and these clusters are ar-
ranged in hierarchical order either in a top-down or bottom-up 
approach. Hierarchical clustering is widely used in solving routing in 
WSNs, energy harvesting issues in WSNs. Hierarchical clustering is used 
to solve routing, data aggregation [11], routing, synchronization [12], 
mobile sink [13,14], and energy harvesting [15]. 

2.1.3. Principal Component Analysis (PCA) 
Large datasets are common in many applications and difficult to 

interpret. Principle component analysis (PCA) belongs to an unsuper-
vised learning algorithm that reduces the dimensionality of datasets, 
increases interpretability, and at the same time, preserves the data loss. 
PCA can compress the features, whereas K-Means can compress the data 
set. PCA can also be used to filter the noisy data. In WSN, PCA is applied 
at the individual node level, at the cluster head (CH) level to reduce the 
communication overheads. It also reduces the buffer overflow. Many 
algorithms have adopted PCA for different applications like localization 
[16], target tracking [20], data aggregation [17–19], and fault detection 
[21,22]. 

2.1.4. Singular Value Decomposition (SVD) 
Singular value decomposition (SVD) simply displays the interesting 

geometrical property of PCA. It has some beautiful algebraic features 
which can be applied theoretically and geometrically for linear trans-
formations in data science. It is also used in addressing routing [10] and 
data aggregation issues in WSNs [23]. 

2.1.5. Independent Component Analysis (ICA) 
Independent Component Analysis (ICA) is a modified version of PCA. 

ICA analyses the data from various sources like business intelligence, 
social networking, digital images and removes the higher-order de-
pendencies, which are not possible in PCA. 

2.1.6. Fuzzy-c-means 
Fuzzy-c-means clustering was developed in 1981 by Bezdek by 

employing a Fuzzy set theory [126]. This technique uses similarity 
measures such as intensity, connectivity, and distance to identify clus-
ters. This clustering technique produces a better result in finding optimal 
cluster centers compared to k-means clustering when the data sets are 
overlapped with each other. Usually, it is used in image segmentation, 
business intelligence, pattern recognition, bioinformatics, etc. Mostly it 
is used in WSNs to solve localization [25,26], mobile sink [27], and 
connectivity problems [28]. 

2.2. Supervised learning 

The term Supervised learning originates from the fact that the whole 

process is monitored by a supervisor. It is an influential tool to classify 
the data and process the data through machine learning languages. In a 
supervised learning algorithm, the training model comprises of known 
input datasets and known responses (output data). When new inputs are 
given, it maps an input to output based on the known input–output pairs. 
It is a very beneficial tool to solve classification and regression problems. 
For instance, Decision Trees, Neural Networks, Random Forest, Support 
Vector Machine (SVM), and k-nearest neighbor (K-NN) belong to su-
pervised learning [5]. The supervised learning algorithms have been 
efficiently applied to solve routing problems [29–36], localization 
problems [44–53], event detection problems [56], target tracking [55], 
and sensor fusion issues in WSNs [37–43]. 

2.2.1. Regression 
Regression techniques are primarily used for two purposes. One is for 

prediction, and the other is for forecasting. In some cases, the regression 
techniques are used to define the causal relationship between the 
dependent and independent variables, as expressed in Eq. (1). 

u = f (v)+ r (2)  

where u notifies the dependent variable, v implies the independent 
variable, f(v) builds up the relationship between u and v. r defines the 
error rate. To apply the regression technique for prediction and casual 
relationships, the designer must be careful to defend why the existing 
relationship has predictive power for a new-fangled context and how 
casual relationships can be defined. Many variations of regression 
techniques are used in the literature, such as regression with more 
predictive variables than observation, prediction variables measured 
with errors, and casual interference with regression, etc. Regression 
technique is used in WSNs to handle various issues like data aggregation 
[37,38], localization [44], connectivity issues [57,58], etc. 

2.2.2. Classification 
The classification algorithms learn from input data and use this 

learning to classify new data points. The classification algorithms may 
be a single class or multi-class algorithms. The algorithms like Artificial 
neural networks (ANN), support vector machine (SVM), and k nearest 
neighbor (K-NN), Bayesian learning, Random forest, decision trees 
efficiently solve different challenges and issues in WSNs. These are 
discussed in the following section briefly. 

2.2.2.1. Artificial Neural Networks (ANN). An artificial neural network 
(ANN) is a mathematical model that imitates the human brain for per-
forming the tasks. ANN is a huge collection of neurons that process the 
input data and produce the correct output. ANN consists of three layers 
called the input layer, one or more hidden layers, and the output layer. 
The input data is given to the input later and processed by the hidden 
layer using mathematical models, and the output layer produces accu-
rate outputs. The ANN has been applied in WSNs to solve various issues 
like routing [30,31,90,119–125], node localization [45,46], data ag-
gregation [39], congestion control [59,60], etc. 

2.2.2.2. Support Vector Machine (SVM). Support Vector Machine is a 
category of supervised ML technique that gives the best classification 
from a given data set by using a hyperplane by coordinating individual 
observations. SVM can solve both linear and no-linear problems and 
most suitable for large datasets. SVM is applied to WSNs to solve various 
issues like routing [33], localization [47,48], fault detection [22,61], 
congestion control [62], and connectivity issues [63]. 

2.2.2.3. K-Nearest Neighbor (k-NN). K-Nearest neighbor (k-NN) is one 
of the most popular, straight forward instance-based learning methods 
used to solve regression and classification problems. k-NN mostly con-
siders the distance between the given training sample and the test 
sample. The various distances like Hamming distance, Euclidean 
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distance, Manhattan distance and, Chebychev distance function are 
considered in k-NN. This method finds the missing samples from the 
featured space and decreases the dimensions. The k-NN has been applied 
for data aggregation [40] and anomaly detection [64] in WSN 
applications. 

2.2.2.4. Deep learning. Deep learning is a data learning method with a 
multi-layer perception that belongs to the ANN family. It mimics the 
communication and information processing systems of the human brain 
and processes the data for detecting objects, translating languages, 
recognizing speeches, and making decisions. Deep learning is used to 
handle many issues in WSNs like anomaly and fault detection, energy 
harvesting, data quality estimation, and routing [32]. 

2.2.2.5. Bayesian. Bayesian learning is a statistical learning approach, 
finds the relationship between the datasets by learning conditional in-
dependence from different statistical methods. Bayesian learning takes 
different prior probability functions and new information to determine 
posterior probabilities. If a set of inputs are represented by Y1, Y2, Y3… 
Yn, and returns, a label θ, the probability of p(θ) must be maximized. 
Several issues in WSNs such as routing [34–36], data localization 
[49–51], aggregation [41,42], fault detection, connectivity, and 
coverage problems [65] have been solved by Bayesian learning 
methods. 

2.2.2.6. Decision trees. Decision trees (DT) belongs to the supervised 
learning ML techniques that use sets of if then else rules to enhance the 
readability. DT contains two types of trees. One is the leaf node, and 
another is the decision nodes. DT predicts a class or target based on the 
decision rules and creates a training model inferred from training data. 
There are many advantages of decision trees like transparency, less 
ambiguity in decision making, and allows for a comprehensive analysis. 
Decision trees are applied in WSNs to handle various issues like con-
nectivity [66], data aggregation [43], mobile sink, etc. 

2.2.2.7. Random forest. Random Forest (RF) Algorithm is a supervised 
learning algorithm having a collection of trees, and each tree gives a 
classification. RF works on the two principles; first, it creates a forest 
classifier, then produces the results. RF works well for heterogeneous 
data with a vast number of data sets. RF is used in WSNs to solve 
problems like MAC protocols [67] and sensor network coverage [68]. 

2.3. Semi-supervised learning 

Any machine learning algorithm requires training data to learn from 
it. Semi-supervised learning uses both known and unknown data sets for 
training and predicts the output based on the trained data. In semi- 
supervised learning, the data is first clustered using unsupervised 
learning; later, the remaining data is labeled using supervised learning 
[5]. It’s relatively expensive to gather input and output pair training 
data in a semi-supervised learning algorithm in practical applications. 
Semi-supervised learning is applied in WSNs to solve various issues like 
data aggregation, localization [52,53], and fault detection in WSNs. 

2.4. Reinforcement learning 

Reinforcement Learning is one category of machine learning that 
learns from the environment in the absence of a training dataset. It tries 
to take suitable action to maximize the reward points according to the 
situation. The Q-learning and deep Q-learning is the example of rein-
forcement learning [5]. Reinforcement learning is used to solve routing 
issues efficiently in WSNs [54,127,138]. 

2.5. Evolutionary computing algorithms 

Evolutionary algorithms are a subcategory of artificial intelligence 
(AI) that uses a heuristic-based approach to solve problems that can not 
be solved by polynomial time. Evolution algorithms are motivated by 
nature and mostly used to solve optimization problems. These algo-
rithms include genetic algorithms, particle swarm optimization, ant 
colony optimization, etc. [5]. Evolutionary algorithms are used to 
handle various issues and challenges in WSNs efficiently [75–77]. 

3. Challenges in WSNs and machine learning techniques 

Usually, sensor nodes are deployed in hazardous environments 
where we leave the network run automatically without any human 
intervention. The designer of WSNs must consider the limited battery 
power, memory constraints, link failure, dynamic changes in topology 
(sometimes), and decentralized control. In this section, we discuss 
various challenges in Wireless Sensor Networks that are handled by 
machine learning techniques. We have classified WSN challenges into 3 
types. These are; (i) Functional challenges, (ii) Security and other 
challenges, (iii) Future challenges [126]. These challenges are discussed 
in each subsection, and we have extracted the features and represented 
them in a tabular form for the clarity of the demonstration. 

3.1. Functional challenges 

There are many challenges like Clustering and Data aggregation, 
event detection and query processing, energy harvesting, MAC man-
agement, Localization, Object tracking, Mobile sink, Congestion control, 
Coverage, and Connectivity, Routing issues handled by different ma-
chine learning algorithms in WSNs. All these challenges are categorized 
as functional challenges. Table 1 summarizes the functional challenges 
of WSNs. 

3.1.1. Clustering and data aggregation 
In large scale networks, it is a mandatory requirement in WSNs that 

the sensed data must be delivered to the sink node directly. Clustering 
can help to transmit the data directly to the sink node and saves a 
tremendous amount of energy. Efficient cluster head selection is another 
challenging task in clustering that leads to minimal energy consumption. 
CH collects the data from other sensor nodes within the cluster, performs 

Table 1 
Functional Challenges in WSN.  

SL. 
No 

WSN Challenges Machine learning 
technique 

Studies 

1 Clustering and data 
aggregation 

PCA [17–19] 
Regression [37,38] 

2 Event detection and 
Query Processing 

KNN [56,69] 
Deep learning [70] 
PCA [71] 

3 Energy harvesting Deep learning [72] 
Reinforcement 
learning 

[73,74] 

4 Coverage and 
Connectivity 

Fuzzy c means [28] 
Regression [57,58] 

5 Localization and 
Object Tracking 

ANN [45,46] 
SVM [47,48] 
Semi supervised [52,53] 

6 Mobile Sink Evolutionary 
algorithm 

[2,27,75–77,139,140,146] 

7 Congestion Control SVM [62] 
ANN [59,60] 
Reinforcement 
Learning 

[78,79] 

8 Routing ANN [119–125] 
Evolutionary 
algorithms 

[93–105] 

Fuzzy logic [106–118]  
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data aggregation, detects the faulty nodes, and removes the faulty nodes 
from the network [7–9,17–19,37,38]. 

3.1.2. Event detection and query processing 
Many applications of WSNs require that event should be detected 

around the moving objects and should be delivered to the user. 
Furthermore, the events occur at different locations and last for a longer 
period that is unknown in advance. WSNs can be monitored in three 
ways, such as event-driven, continuous, or query-driven. ML helps to 
provide effective query processing and solutions to query processing, to 
detect events, assess event validity with limited resource facility. 
Although event detection and query processing have taken huge atten-
tion from the research community [56,69–71], there is still a lack. It 
demands developing advanced event detection and query processing 
technique applying different machine learning techniques. 

3.1.3. Energy harvesting 
Energy harvesting has appeared as an alternative for providing 

sensor nodes power to operate for a longer time in an open environment. 
It is the process of transferring ambient energy to electrical energy. 
Several challenges might pose while successfully transporting energy 
harvesting technology into WSNs [15,72–74]. 

3.1.4. Localization and object tracking 
Localization is the process of locating the sensor node’s geographic 

position because most of the WSN application is based on location [45- 
48,52,53]. In large scale networks, it is hard to fix up the Global Posi-
tioning System (GPS) hardware in each sensor node as it is not finan-
cially feasible. Further, GPS does not support the indoor environment. 

3.1.5. Mobile sink 
In WSNs, sensor nodes collect the information and send the infor-

mation to the sink node either through a single-hop or multi-hop 
manner. The node near to BS becomes the bottleneck and creates a 
hotspot problem. So, the concept of Mobile sinks has been introduced in 
WSNs research. The mobile sink gathers the information by moving from 
one sensor node to the other. As it is difficult for a mobile sink to visit 
each sensor node, scheduling the mobile sink is a focused research issue. 
Instead of visiting all the sensor nodes, the mobile sink collects the in-
formation from Rendezvous points (RPs). Other sensor nodes send the 
information to RPs. Sometimes multiple mobile sinks are used to avoid 
delay, but it is too cost-effective. ML can help to find optimal RPs and 
avoid delays by using a mobile sink [2,27,75–77,139,140,146]. 

3.1.6. Congestion control 
Usually, congestion occurs only when the volume of information 

crosses the capacity of the communication channel. In the context of 
WSNs, congestion occurs when the communication channel transmits 
more data compared to the size of the bandwidth. Congestion affects the 
end to end delay, packet loss, QoS, and overall energy consumption. 
Mostly, congestion occurs at the node level or the link level. Congestion 
occurs at the node level due to the packet arrival rates, and Link level 
congestion occurs due to a lower bit error transmission rate between two 
nodes and collision. ML algorithms can estimate the traffic accurately, 
reduce the end to end delay, adjust the transmission range dynamically 
[59,60,62,78,79]. 

3.1.7. Coverage and connectivity 
Coverage and connectivity is a major issue in WSNs. Mostly, WSNs 

are deployed randomly or deterministically in a particular area. 
Coverage means how efficiently a sensor node monitors the specified 
area. Connectivity means a sensor node should be able to reach the BS 
station directly or through relay nodes. If the sensor nodes do not cover 
the area, there will be a gap in between nodes. ML can help to estimate 
the optimal number of sensors to cover the target area and dynamically 
change the routing path if any connectivity issue occurs [28,57,58]. 

3.1.8. Routing 
Routing is one of the primary issues in WSNs due to the diversified 

applications. ML helps to find an optimal route by consuming less energy 
while transmitting the packet from the source node to the sink node 
[93–125]. By doing so, it extends the network lifetime. The details are 
explained in a separate section (Section 4). 

3.2. Security and other challenges 

This section discusses the security and other challenges in WSNs in 
detail. These challenges include anomaly detection, QoS management 
techniques, Link quality management, resource allocation and task 
scheduling, fault detection, etc. For clarity of the demonstration, we 
have summarized in a tabular form, as shown in Table 2. 

3.2.1. Anomaly detection 
Anomaly detection is one of the significant concerns in WSNs. 

Anomalies in WSNs lead to an end to end delay, inaccurate sensor 
readings, transmission overheads, etc. So. various techniques have been 
developed to detect anomalies and to protect from multiple attacks such 
as black hole attack, gray hole attacks, wormhole attacks, and hybrid 
anomalies [80–84]. 

3.2.2. QoS management 
Quality of Service (QoS) ensures high priority in delivering real-time 

data to the destination. In the context of WSNs, it suffers from band-
width and energy constraints in the timely delivery of the data at the 
destination. Most of the time, it is assumed that sensor nodes are faulty. 
So, data aggregation, query processing, unbalanced traffic, data redun-
dancy, scalability, along with randomly deployed sensor nodes, poses 
enormous challenges to QoS requirements in WSNs [78,79]. The 
network-specific, as well as application-specific QoS requirements in 
WSNs, are well managed by ML techniques listed in [59,60] 

3.2.3. Link quality management 
Link quality estimation is an essential feature in WSNs as it depends 

upon the environmental parameters like signal quality, interference, etc. 
In [85,86], a metric map is developed to measure the link quality using 
supervised learning. This study uses received signal strength indicator 
(RSSI), communication channel load, buffer size, and forward–back-
ward probabilities. More such ML techniques must be investigated for 
accurate link quality measurement. 

3.2.4. Resource allocation and task scheduling 
Energy-saving is the major issue in WSNs. This goal can be achieved 

either by developing suitable communication protocols or monitoring 
the activities of sensor nodes. For instance, sensor nodes waste their 
energy by listening to other node’s transmission [87–89]. Such type of 
active operations can consume more energy. ML techniques can be 
configured in the sensor nodes to optimize resource allocation and 

Table 2 
Security and other Challenges in WSN.  

S. 
No 

WSN Challenges Machine learning 
technique 

References 

1 Security and anomaly detection Regression [80,81] 
SVM [82,83] 
Decision tree [84] 

2 QoS management Reinforcement Learning [78,79] 
ANN [59,60] 

3 Link Quality Management Matric-map [85,86] 
4 Resource allocation and task 

scheduling 
Fuzzy logic [87] 
Evolutionary Algorithm [88] 
ANN [89] 

5 Fault detection PCA [21,22] 
SVM [22,61] 
Bayesian [65]  
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power management, etc. 

3.2.5. Fault detection 
Usually, WSNs are deployed in hostile environments where the 

human attendant is not feasible. The fault in WSNs occurs due to several 
reasons such as battery failure, communication link failure, node failure, 
software failure, topology change, dynamic environment, etc. So, the 
detection of faulty nodes as well as other faults in WSNs is a quite 
challenging task. Several fault detection mechanisms are discussed in 
the literature [21,22]. The use of machine learning techniques in WSNs 
reduces the complexity and increases the accuracy [22,61,65]. 

3.3. Future challenges 

There are many challenges like comprehensive sensing, detecting 
data spatial and temporal correlation, proper resource management, 
distributed and adaptive machine learning techniques must be devel-
oped for in-network processing of data instead of exhausting the nodes 
for high computational tasks. We have referred to a few studies that 
discuss these issues [129–136] and summarized in Table 3. ML-based 
Data compression and dimensional techniques reduction can be used 
to compress the data instead of traditional compressed techniques to 
produce a better energy-saving scheme. Data correlation is an important 
issue that needs to be addressed in hierarchical clustering. Only one 
node must be active at a particular time in a cluster to monitor the 

cluster area to save energy. In WSNs, most of the time, sensor nodes 
exhaust energy by over listening to other nodes. The sensor nodes 
equipped with machine learning techniques can be able to manage the 
resources and power allocation schemes efficiently. 

To avoid large-size tables, out of many challenges and issues, we 
have selected a few significant problems and challenges that have been 
handled by ML techniques in WSNs and summarized in Table 4. Already 
previous sections present some hints about these issues, and the remark 
column of Table 4 describes the functionalities of each challenge. For 
example, Clustering and data aggregation [17] issues handled by ML 
techniques can improve the efficiency of the data aggregation process 
and prolongs the network lifetime. Similarly, ML-based localization and 
object tracking methods minimizes the error rate and improves the 
localization accuracy. Routing [24,102,117], Mobile sink 
[2,76,139,140], Security and anomaly detection [81,82], and QoS 
management [60,79] are the major issues that have been handled by ML 
techniques, and we limit the discussion here to avoid duplicity. 

4. Routing in WSNs using machine learning techniques 

This section discusses various machine learning techniques, how 
efficiently ML has been applied to handle WSNs routing. As the appli-
cations of machine learning are widely applied in different aspects of 
WSNs, in this section, we have focused on only the routing issues that 
have been handled by ML techniques. In WSNs, collecting sensed in-
formation, again extracting useful information from the gathered data, 
processing the data, delivering the data to the BS in an energy-efficient 
manner, and enhancing the network lifetime are the key issues. So, 
energy conservation is one of the critical design goals in WSNs, and 
routing protocols are the best-known solutions for energy conservation. 
Large scale networks undoubtedly present a large amount of data to be 
transmitted, processed, and received. It is nearly impossible to transfer 
all the data to the BS due to sensor limited constraints and bandwidth 
constraints. Opting machine learning techniques in routing can process a 
massive amount of data with less amount of time and provides accuracy. 
To handle these issues, many routing protocols are developed in the 
recent past. For the sake of simplicity, we have depicted the routing 
issues dealt with by ML techniques in Fig. 4 in section II, and we have 
demonstrated a basic routing example in Fig. 5. 

4.1. Advantages of ML techniques in WSNs routing 

The main advantages of ML-based routing are listed as follows.  

• ML does not require reprogramming due to the environmental 
changes.  

• ML also reduces communication overhead as well as delay.  
• ML also helps to select the optimal number of cluster heads in 

routing. 
• ML reduces the complexity of routing and satisfies the QoS re-

quirements using simple computational methods and classifiers. 

Table 3 
Future Challenges in WSN.  

SL. 
No 

WSN Challenges Machine learning 
technique 

References 

1 Compressive Sensing and Sparse 
Coding 

Bayesian, ICA, 
Dictionary Learning, 
SVD 

[135] 

2 Detection of data Spatial and 
Temporal Correlations 

Need to be explored [129,130] 

3 Distributed and Adaptive 
Machine Learning Techniques 

Need to be explored [131–134] 

4. Resource Management Need to be explored [136]  

Table 4 
Major issues and challenges in WSN handled by ML Techniques.  

SL. 
No 

WSN Challenges Machine learning 
technique 

Remarks 

1 Clustering and 
data aggregation 

PCA [17] Improved Data aggregation 
process 

Regression [38] Improved network lifetime 
2 Localization and 

Object Tracking 
SVM [48] Improved localization accuracy 
Semi-supervised  
[52] 

Minimized error rate 

3 Routing ANN [119] 
Evolutionary 

Reduced energy consumption 
of sensor nodes and prolong the 
network lifetime 

algorithms [102] Path optimization 
Fuzzy logic [117] Increased network lifetime 

4 Mobile Sink Evolutionary 
algorithms  
[2,76,139] 

Optimal mobile sink path 
selection 

[140] Optimizes communication 
distance, reduces energy 
consumption by avoiding long- 
distance communication, and 
reduced energy consumption 

5 Security and 
anomaly 
detection 

Regression [81] High detection rate 
SVM [82] Minimizes the complexity of 

training and testing phases 
6 QoS 

management 
Reinforcement 
learning [79] 

Achieved QoS by maintaining 
Reliable topology 

ANN [60] Achieved QoS by avoiding 
congestion  

User 
Sensor node Sink/Base 

Station 

Fig. 5. Example: Routing in WSNs.  
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4.2. Limitations of ML techniques in WSNs routing 

Despite many advantages, machine learning algorithms have few 
limitations for applying in WSNs routing.  

• A large amount of data consumes a large amount of energy while 
processing the data. So, there is always a trade-off between energy 
constraints and high computational complexities involved in ML 
techniques.  

• Again, the system’s performance depends upon the past data, which 
is quite tough to acquire in WSNs.  

• In a real-time scenario, validating the results through a machine 
learning algorithm is quite a difficult task. Sometimes, identifying 
machine learning algorithms to solve a particular routing issue is 
quite tricky. 

4.3. Data routing using ANN 

Artificial Neural Network (ANN) is an information processing system 
or computational model inspired by the biological structure of neurons. 
ANN is the basic building block of Artificial Intelligence and problem- 
solving that could be nearly impossible for a human. The human brain 
consists of billions of cells, and each cell is called a neuron. The inter-
connection of the number of neurons having self-learning capabilities 
produces better results by processing a large amount of data from the 
outside world. In general, ANN consists of three layers. These layers are:  

• Input layer  
• The intermediate layer (Hidden Layer)  
• Output layer 

The hidden layer can be a single layer or multiple layers that depend 
on the applications. The basic structure of the simplified ANN is depicted 
in Fig. 6. ANN involves a large number of processors operating in par-
allel and arranged hierarchically. The input layer processes raw data and 
passes it to the other layer. The hidden layers take the data from the 
preceding layer rather than the raw data and process it and send it to the 
next layer, similar to the optic nerves in human visual processing. 
Finally, the output layer produces the output. In [90] ELDC, a robust 
routing protocol is discussed based on ANN that trains the protocol using 
various parameters distance between the sensor nodes, CHs, residual 
energy, broader nodes, and base station. ELDC uses a backpropagation 
neural network (BPNN) to elect some reliable CHs that balance energy 
consumption and avoids data loss in WSNs. ANN operates on two types 
of learning procedures. One follows the principle of self-learning/ 
competitive learning, and another follows the corrective learning prin-
ciple. Self-Organizing Map (SOM) is the most widespread ANN model 
and belongs to a competitive learning model that means human 

intervention is not required during the learning process. It should have 
little knowledge about the physical characteristics of the input data. 

4.3.1. Self-Organizing Map (SOM) 
A Self-organising map (SOM) is one category of (ANN) which is 

trained by unsupervised learning to reduce the dimensionality (see 
Fig. 7). The SOM is developed by professor Kohonen in 1980 and 
recognized as Kohonen maps. The SOM is used mostly for clustering by 
grouping similar data points. SOM is widely used for solving routing 
problems in WSNs. 

In [119], the author has developed a routing protocol called Energy 
Based clustering Self Organisation map (EBCS) that uses energy level 
and coordinates of nodes as the parameters to find CHs. The EBCS forms 
energy balanced clusters that minimize the energy consumption of 
nodes by balancing the load in a network, which leads to network life-
time extension. In [120], the author uses a neural network to build 
efficient topologies in WSNs. These Efficient topologies make the rout-
ing procedure easier and reduce the energy consumption efficiently in 
WSNs. Authors of [121] use ANN for routing purposes. The main 
advantage of using ANN is to speed up the lookup table process. The size 
of the lookup table is not influenced by the decision of the speed such as 
where to send the packet next. The research in [122] presents an 
Adaptive Resonance Theory (ART) neural network for routing in WSNs. 
This work improves the lifetime of the network by using some mecha-
nisms that include minimum CH separation distance, a CH rotation 
system, ART1 based CH election, and load balancing cost functions. The 
research work in [123] has proposed an improved PEGASIS routing al-
gorithm based on neural network and ant colony algorithm. This pro-
tocol focuses on the neural network for CH selection based on the 
location, residual energy of node, and neighbor node to the base station. 
In [124], a solar energy prediction model is proposed based on neural 
networks and proved its energy efficiency. It is concluded that nodes 
having higher residual energy are having more robust energy harvesting 
capacity. 

An enhanced NN based RZ LEACH protocol is proposed in [125] that 
uses hybrid ACO/PSO based routing to enhance the network lifetime in 
WSNs. NN is used to emphasize the cluster head selection process. 

4.4. Bayesian-based routing 

Few Naïve Bayes routing protocols for WSNs are discussed in 
[34–36]. In [34], the research work focuses on the selection of CHs for 
routing and prolongs the network lifetime by reducing energy con-
sumption. Even Naïve Bayes has an additional property that ensures of 
adding and removing new features dynamically. In [35], a data 
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Fig. 6. A simple artificial neural network.  

Fig. 7. Example of SOM.  
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collection technique is discussed based on the Bayesian approach that 
emphasizes creating a projection vector in each reiteration of routing by 
incorporating a target node selection. A Bayesian learning method is 
used in [36] that is suitable for centralized as well as a decentralized 
infrastructure. This method also uses a scheduling approach to balance 
energy consumption. 

4.5. Data routing using K-means 

In [7], a well-known clustered based routing is discussed that finds 
the optimal number of clusters for WSNs routing. This routing protocol 
improves the packet delivery ratio (PDR), throughput, minimize energy 
consumption, and reduces communication overhead. In [8], the author 
discusses a protocol called as EECPK-means, takes a random initial 
center point, and finds the optimal center point in the cluster. The 
optimal number of CHs is found based on Euclidean distance and re-
sidual energy of the sensor nodes. EECPK-means follows a multi-hop 
path from CHs to BS by maintaining energy consumption uniformly 
and protects data loss. An efficient K-means (EKMT) is discussed in [9] 
that finds optimal cluster heads close to the member nodes of the cluster 
and sink node. This technique selects the CHs dynamically and enhances 
the network lifetime, reduces the delay, and produces better throughput. 

4.6. Routing using reinforcement learning 

In [138], the author has explored the applications of the Q-learning 
algorithm to solve multicast routing problems in wireless ad hoc net-
works through reliable resource allocation. In [127], the author has used 
unlicensed ultra-wideband (UWB) technology based on the principle of 
Q-learning [138] to enhance the performance in geographic-based 
routing. The sensor node energy and delay are used as the metrics to 
formulate the learning reward function in Reinforcement learning-based 
geographic routing protocol. In this routing protocol, UWB devices are 
fitted with the CHs to detect the locations of the nodes. Each node is 
equipped with a routing table that maintains the information about 
neighbour nodes to exchange the data by sending a simple “hello” 
messages and in this way the routing path is established. The main ad-
vantages of reinforcement learning are (i) it does not require global 
information to achieve acceptable routing solutions. (ii) the UWB 
communication operates on a constant frequency band (3.1–10.6 GHz) 
provided by the Federal Communications Commission (FCC) [128]. The 
author has discussed an enhanced geographic routing for WSNs called 
“Q-Probabilistic Routing” (Q-PR) that finds optimal paths by learning 
from the previous routing based on reinforcement learning and Bayesian 
decision model. 

4.7. Routing using computational evolution algorithm 

4.7.1. Genetic Algorithm (GA) 
Genetic Algorithm is a bio-inspired algorithm evolved from Charles 

Darwin’s theory of natural selection. Mainly, GA operates on the prin-
ciple of natural selection, where the fittest individuals are selected to 
reproduce offspring for the next generation. To generate new offspring, 
GA uses the following biological operators. The principle of GA is 
depicted in Fig. 8.  

• Selection operator  
• Crossover operator  
• Mutation operator 

Each generation consists of a set of populations, and each population 
is characterized by a set of parameters called genes. The size of the 
population can be selected based on a specific problem. The fitness 
function determines the fitness value of an individual that is the skill of 
an individual to compete with other individuals. The selection operation 
selects the fittest individual for the next generation. The two best fittest 
chromosomes are called parents. The parents are mated at a crossover 
point to produce new offspring. Some of the genes of the new offspring 
are muted with a low random probability, and the process continues till 
no new generation can be created. Various researchers have incorpo-
rated GA in WSNs to solve routing problems. In [93], GA is used to 
cluster the non-uniformly distributed nodes and select the cluster heads 
(CHs) among the clusters. The algorithm can also be used to restructure 
the clusters and cluster heads when geographic location changes or 
failure of CH occurs. In [94], the author has discussed a routing protocol 
for energy harvesting in WSNs. The main purpose of energy harvesting 
in WSNs is to maximize the operating environment of WSNs instead of 
maximizing the network lifetime why because the sensor nodes rely on 
the energy harvested from the environment rather than batteries. In 
[95], the author has introduced sensor mobility to minimize the distance 
between CHs and base stations. Obtaining this procedure, the author has 
proved the energy efficiency over the LEACH routing protocol. A 
Routing protocol for a two-tier sensor network based on GA is proposed 
in [96] that expands the network lifetime by reducing energy con-
sumption. The research in [97] discusses a flat-based routing protocol 
that finds an alternate path in a WSN using MOGA. The study in [98] 
presents a technique to improve the lifetime of a multi-sensor network 
using optimal traffic distribution. In [99], the work has been focused on 
distributed GA that proves its energy efficiency based on the required 
detection probability. In [100], the author has concentrated on the QoS 
parameters by using GA based technique. In [101], a GA based approach 
is used in routing for path optimization. The research in [102,103] focus 
on GA based techniques, where the emphasis is given on fitness function 
that is calculated based on two significant parameters distance and en-
ergy, and proved as energy efficient. In [146], the movement of the 
mobile sink is scheduled efficiently through genetic algorithm pro-
gramming to maximize the Wireless Sensor Network lifetime. 

4.7.2. Ant Colony Optimization (ACO)/Particle Swarm Optimization 
(PSO) 

The research work in [104] presents an efficient routing protocol 
that considers two metrics, such as the transmission range of a sensor 
node and data forwarding load. This research focuses on the clustering 
method based on particle swarm optimization. In [105], the research 
work also follows ant colony optimization (ACO) for routing the data 
packet considering various parameters such as transmission distance, 
residual energy and finds the shortest path from the source node to the 
destination by consuming minimal energy. 

4.8. Routing using support vector machine 

In [10], the author has used a shallow light tree (SLT) along with 
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Fig. 8. Basic Principle of Genetic Algorithm.  

P. Nayak et al.                                                                                                                                                                                                                                  



Measurement 178 (2021) 108974

10

singular value decomposition (SVD) to route the data packet to the base 
station by considering an arbitrary topology. This network is most 
suitable for smart cities, specifically for health monitoring using IoT 
devices. But the drawback of this system is transmission overhead 

increases proportional to the increased number of sensor nodes. A secure 
cluster-based routing protocol is proposed in [33] that selects the CHs 
based on residual energy and distance and enhances network lifetime. 

Table 5 
Summary of SOM based Routing in WSNs.  

Studies Authors Criteria Network type SOM parameters Simulation 
Tool 

Performance metrics 

[119] Neda Enami et al. clustering Homogenous WSN with 
static sensor nodes 

Energy and coordinates of 
sensor nodes 

MATLAB First node dies, Half node dies, Last 
node dies, and Network coverage 

[120] Chiranjib Patra 
et al. 

Design of Energy 
efficient topologies 

WSN with random 
deployment of sensor 
nodes 

Coordinates of sensor nodes MATLAB Node usage frequency throughout the 
simulation 

[121] Michal Turčaník et 
al 

Designing routing table WSN with a mesh 
topology 

Node address and interface 
Status 

MATLAB Delay, No. of look up tables, and slices 

[122] Mohit Mittal and 
Krishna Kumar 

Network lifetime 
extension 

Homogenous WSNs with 
static sensor nodes 

Sensor node positions MATLAB Network lifetime and no. of 
transmitted packets 

[123] Tao Li et al. Optimal chain path and 
chain head selection 

Homogenous WSN with 
static sensor nodes 

Sensor node positions, 
energy, and number of 
neighbors 

NA NA 

[124] Junling Li, Danpu 
Liu 

CH selection Energy harvested WSN Residual energy and 
harvested energy of sensor 
nodes 

OMNeT++

4.5 
No. of awake nodes, Residual energy, 
and Throughput 

[125] Deepshikha et al. Network lifetime 
extension 

WSNs with mobile BS Energy, number of 
neighbors, distance 

MATLAB No. of dead nodes, Remaining energy, 
No of packets transmitted to CH and 
BS  

Table 6 
Summary of Evolutionary computing-based routing in WSNs.  

Studies Authors Criteria Network type Fitness function Simulation 
Tool 

Performance metrics 

[93] Zhou Ruyan et al. Selection of Cluster Head WSN with mobile 
sensor nodes 

Fitness function based on 
cluster centers 

NA NA 

[94] Yin Wu et al. CH selection and finding 
optimal routing path among 
each CHs 

WSN where sensor 
nodes are energy 
harvested 

Fitness function based on 
distance 

OMNET++ Packet loss and energy 
consumption 

[95] Omar Banimelhem et al. Mobility at the sensor nodes to 
reduce the distance between 
the sensor node and BS 

WSN with mobile 
sensor nodes 

Fitness based on distance MATLAB First node dies, half node dies, 
Last node dies, and Remaining 
energy 

[96] Ataul Bari et al. Finding optimal path among 
each relay nodes 

Two tired sensor 
networks 

Fitness function based on 
energy 

MATLAB Network lifetime 

[97] Srinivas N et al. Optimal Traffic distribution 
Technique 

sensor nodes and BS 
are static 

Fitness function based on 
distance 

NA Chi-square-like deviation form 
distribution 

[98] Y. Pan and X. Liu Detection Probability Multi-Sensor 
Network 

Fitness function based on 
network lifetime and 
throughput constraint 

NA Network lifetime extension 

[99] Q. Qiu et al.. Emphasis on QoS parameters Clustered WSN Fitness function based on 
remaining energy 

C++ based 
software 
program 

Network lifetime and Energy 

[100] Navrati Saxena et al.. Emphasis on QoS Parameters WSN with real-time 
data 

Fitness function based on 
distance 

NA Delay, Energy consumption, 
and Throughput 

[101] Jin. M. Zhou, and A.S. 
Wu 

Path optimization Clustered WSN Fitness function based on 
distance 

NA Clustering with Different BS 
positions and scalability 

[102] P. Nayak et. al Path Optimization Hierarchical sensor 
network 

Fitness function based on 
distance and energy 

NetSim 
Simulator 

Network lifetime and No of 
packets sent to BS 

[103] Veena Trivedi and P. 
Nayak 

Path Optimization MANET Fitness function based on 
energy and distance 

ns-2 Simulator Delay, Throughput, and PDR 

[104] P. Kulla, P.K. Jana Path Optimization (PSO) Homogenous WSN Fitness function based on 
transmission range and 
data forwarding load 

MATLAB Network lifetime, Energy 
consumption, Dead sensor 
nodes, and No of packets sent to 
BS 

[105] Y. Sun, W. Dong, Y. 
Chen 

Path Optimization (ACO) Static WSN Fitness function based on 
distance, energy, and 
transmission path 

NA Energy consumption and 
Network lifetime 

[141] M. Khabiri, A. Ghaffari Selecting optimal cluster 
heads (Cuckoo Optimization) 

WSN with static 
nodes 

Fitness function based on 
distance and energy 

MATLAB No. of alive nodes, Minimum 
energy consumption, and No. 
of packets sent to BS 

[142] S. Tabibi, A. Ghaffari Finding optimal rendezvous 
points (PSO) 

WSN with mobile 
sink 

Weight value based on the 
number of packets from 
another node 

MATLAB No. of hops, Packet Loss Ratio, 
Throughput, and Energy 
consumption 

[146] Jinghui Zhong, Zhixing 
Huang, Liang Feng, Wan 
Du, Ying Li 

Scheduling mobile sink 
movements 

WSN with mobile 
sink 

Fitness function based on 
training networks 

NA Average network lifetime and 
Average decision time  
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4.9. Fuzzy logic-based routing protocol 

The fuzzy logic (FL) was invented by Lotfi Zadeh at the University of 
California in 1965. Fuzzy logic computing is not designed for accurate 
reasoning rather than it is designed to predict the degree of truth instead 
of true or false. There are four modules in Fuzzy Logic to predict the 
system output. These are Fuzzifier, Fuzzy Rules, Fuzzy Inference Sys-
tems, and De-fuzzifications.  

• Fuzzifier: Initially, crisp inputs are given to the Fuzzifier. These crisp 
values are actual values taken from the sensors reading.  

• Fuzzy Rules: It is a set of rules like if-then-else conditions and used 
for decision making.  

• Fuzzy Inference System: By taking fuzzy inputs and rules from the 
rule base, the fuzzy output ID is produced by fuzzy inference systems. 

• De-fuzzification: It takes the input data from a fuzzy inference sys-
tem, processes it, and produces the fuzzy output value. 

In [106], the author has discussed a mobile base station using fuzzy 
logic. The routing with a dynamic base station is more complex 
compared to the static base station. In this paper, the lifetime of the 
network is enhanced compared to the static base station using a fuzzy 
controller. In [107], stable election protocol (SEP) is discussed based 
upon the FL control. The FL control optimizes the energy consumption 
required for node mobility, CH selection, and load balancing. The SEP 
protocol also uses weighted probability to select the cluster head and to 
form the cluster. A balanced energy consumption routing (BECR) is 
developed in [108] to enhance the network’s lifetime. The author has 
used fuzzy C means clustering to partition the nodes into the clusters, 
and the node, which is the center of the cluster acts as a CH. When the 
energy of a cluster head drops down, the fuzzy logic system selects the 

other node as cluster head on a rotation basis. The protocol in [109] 
called a CHEF protocol that selects CHs by considering two parameters, 
such as energy and proximity of distance. These parameters are taken as 
two fuzzy parameters and the node with higher energy and locally 
optimal node as elected as CH. Simulation results prove the efficiency of 
CHEF better than LEACH by 22.7%. 

The author in [110] focuses on three fuzzy metrics for CH selection 
that lead to enhancing network lifetime. These metrics are energy, 
concentration, and centrality. Still, the main drawbacks of this protocol 
are the lack of GPS receivers associated with the sensor nodes. There is 
an improvement over CHEF called F-MCHEL [111] that applies fuzzy 
rules based on energy and proximity of distance. A Master Cluster Head 
(MCH) is selected based on the highest residual energy among the CHs, 
gathers the data, and sends it to the base station. It is shown that F- 
MCHEL performs better as compared to LEACH and CHEF and brings 
network stability. In [117], an FL-based routing protocol is proposed 
that emphasizes on supercluster head (SCH) selection based on distance, 
energy, and centrality of CH and proves its energy efficiency. The 
research in [118] focuses on Type-2 Fuzzy Logic and extends the 
network lifetime. Many more protocols are discussed in the literature 
based on fuzzy logic [112–116], and we limit the discussion due to space 
constraints (see Tables 5–8). 

5. Conclusion and future work 

It is a proven fact that Wireless Sensor Networks are different from 
traditional networks in various aspects that demand the development of 
suitable communication protocols, localization techniques, data aggre-
gation methods, scheduling mechanisms, security, fault detection, and 
data integrity. Machine Learning techniques help to enhance the ability 
of WSNs to adopt the dynamics of the environment. Furthermore, 

Table 7 
Summary of Various Machine Learning Techniques in WSNs Routing.  

Sl. 
No 

Machine learning 
approach 

Studies Topology 
type 

Mode of operation Node 
Status 

QoS 
Status 

Network Performance Performance metrics 

1. ANN [90] Tree Centralized Static No Increases the data delivery ratio Network lifetime and Energy 
consumption 

[30] Tree Distributed Static Yes Balances the energy consumption 
and avoid data loss 

Network lifetime and PDR 

[31] Tree Distributed Mobile Yes Enhances Network Lifetime Network lifetime, Energy 
consumption, and Packet loss  

2. Deep Learning [32] Hybrid Centralized Mobile No Overcomes congestion, packet 
loss, and better power 
management 

PDR, Route discovery speed and 
Connectivity  

3. SVM [33] Hybrid Distributed Static No Extends Network Lifetime PDR, and Energy  

4. Game Theory [91] Hybrid Distributed Mobile yes Improves Network Lifetime Transmission cost 
[92]     Extends Network lifetime The First node dies, the Last node 

dies, Residual Energy, and No of 
packets sent to BS  

5. Bayesian [34] Tree Distributed Static No Balances energy consumption Number of alive nodes 
[35] Hybrid Centralized Static No Path Optimization Reconstruction error, Energy cost, 

and communication complexity 
[36] Hybrid Distributed, 

CentralizedBoth 
Mobile No Balances the energy consumption Energy Consumption w.r.t time  

6 K-Means [7] Hybrid Distributed Static Yes Better PDR, Throughput, 
minimization energy 
consumption, control traffic 
overhead 

Number of clusters, Delay, Packet 
Delivery Ratio, and Throughput 

[8] Tree Distributed Static No Avoids data loss, balances the 
energy consumption 

Network lifetime and Energy 
consumption 

[9] Hybrid Centralized Static No Improves throughput and avoids 
delay 

Throughput and delay  

7. SVD [10] Arbitrary Distributed Static No Suitable for IoT application Transmission cost  

8. Q-MAP multicast/ 
Reinforcement 
Learning 

[138] Flat Distributed Static No Reduces overhead of route 
searching 

No of packets sent, Packet delivery 
ratio, and Delay  
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battery power is the primary source of energy in WSNs and network 
lifetime depends on the energy consumption of an individual sensor 
node. This paper gives an overview, how various machine learning 
techniques are used in Wireless Sensor Networks to handle the typical 
challenges of WSNs to enhance the network lifetime while conserving 
significantly less amount of energy. Moreover, the focus has been given 
on machine learning techniques exclusively used in Wireless Sensor 
Network Routing. Keeping all these elements in mind, we have extracted 
a few major routing protocols from the ocean of the database present in 
the current literature. We are hopeful that it will provide some guide-
lines to the current researchers to carry out their research work in this 
emerging area. There are several issues still open and require further 
investigation in WSNs. Based on the review, many more new routing 
protocols can be proposed by incorporating the features of distributed 
machine learning techniques that can make the sensor network energy 
aware, delay aware, and flexible enough to handle the Sensor Network 
constraints and dynamics of environments. Few enthusiastic points are 
discussed here for future research.  

• Quality of Service (QoS): QoS is another aspect of WSNs that varies 
from one application to another depending on the sensor type, data 
type, data rate, traffic handing capability, and many more issues. In 
routing, addressing the QoS issues is quite a challenging task. Many 
real-time applications require timely delivery of data by tolerating 
the delay and latency. Satisfying the delay constraints, bandwidth 
constraints, and incorporating machine learning techniques to 
develop a routing protocol is quite exciting research.  

• Mobile Sink: Mobile sink is another aspect of WSN routing research. 
In large scale sensor networks, data is transmitted in a multi-hop 
manner to reach the destination. The node closer to the sink node 
gets depleted soon that is known as the energy hole problem. To 
avoid this problem, a mobile sink is introduced to collect the data 
from each sensor node. But unfortunately, the mobile sink can not 
visit each sensor node in an extensive sensor network. So, scheduling 
the mobile sink in a delay-aware manner and introducing multiple 
mobile sinks to cover an extensive network can be done by 
employing ML techniques.  

• Multipath Routing: Most of the exciting research shows that data is 
transmitted from a single source node to a single destination node 
and sensor nodes are static. When multiple source nodes and mul-
tiple destination nodes are involved in sending and receiving the 
data, the packet collision will occur definitely. ML techniques can be 
employed to handle this error.  

• Dynamic topology: Recent studies present most of the sensor nodes are 
static. The inclusion of mobility introduces their position changes in 
WSNs. Identifying the accurate position and handling the topology 
dynamics, there is a requirement to develop new protocols. There is 
no precise mechanism to select a particular ML algorithm that is 
suitable for a specific application. It is the designer’s responsibility to 
understand both the network structure and application and select 
appropriate ML techniques.  

• Hybrid ML Techniques: Although many ML techniques are addressed 
in this paper to solve the routing issues in WSNs [1–146], many ML 
techniques can be combined and applied to solve the routing issues in 
WSNs, that yet to be explored. 

Table 8 
Summary of Fuzzy Logic-based Routing in WSNs.  

Studies Authors Criteria Network type Fuzzy Parameters Simulation Tool Performance metrics 

[106] Abhijeet Alkesh 
et al. 

Moving BS strategy 
using fuzzy logic 

WSN with Mobile BS Fuzzy controller based on energy 
and distance 

MATLAB No. of active nodes w.r.t 
rounds 

[107] Mayank Mani, and 
Ajay K Sharma 

CH selection and node 
mobility 

WSN with Mobile BS Fuzzy controller based on Energy 
level, node density, and proximity to 
BS. 

MATLAB No. of alive nodes, PDR, and 
Remaining energy 

[108] Xin Zhao et al. Clustering and CH 
selection 

Homogenous WSN 
with static nodes 

Fuzzy logic based on energy, 
distance from a node to the center of 
the cluster, and density of node itself 

MATLAB First node dies, and Average 
energy consumption 

[109] J.-M. Kim et al. Selection of CH Homogenous WSN 
with static nodes 

Fuzzy if-Then rule based on energy, 
concentration, and centrality 

MATLAB No. of alive nodes and No. of 
clusters 

[110] I. Gupta et al. CH selection Homogenous WSN 
with static nodes 

Fuzzy controller based on energy, 
concentration, and centrality 

NRC fuzzy Java 
Expert System 
Shell (JESS) 

First node dies 

[111] Tripti Sharma, and 
Brijesh Kumar 

Master CH over CHs Homogenous WSN 
with static nodes 

Fuzzy inference system based on 
energy and proximity distance 

MATLAB No. of alive nodes, Energy, 
and No. of packets sent to BS 

[112] Vibha Nehra et al.. Leader selection in 
PEGASIS protocol 

Nodes are static and 
have power control 
capabilities 

A fuzzy system based on residual 
energy, and proximity to BS 

MATLAB No. of alive nodes, Energy 
and No. of packets sent to BS 

[113] Ge Ran et al.. CH selection Homogenous WSN 
with static nodes 

Mamdani’s inference system based 
on distance, node density, and 
battery level 

MATLAB Energy consumption w.r.t 
rounds 

[114] Hironori Ando 
et al.. 

CH selection Homogenous WSN 
with static nodes 

Fuzzy controller based on number of 
neighbors, energy, and cluster 
centroid 

ns-2 and MATLAB No. of alive nodes w.r.t time 

[115] Zohre Arabi Selection of CH and 
algorithm (EF-Tree, 
SID) 

Homogenous WSN 
with static nodes 

The fuzzy system based on energy 
and event 

MATLAB No. of alive nodes, PDR, 
Energy consumption, and 
Network traffic 

[116] Hoda Taheri et al. Clustering Homogenous WSN 
with static nodes 

The fuzzy logic system based on 
node degree and centrality 

MATLAB Energy consumption, 
Network lifetime, and 
Number of CH elections 

[117] Padmalaya Nayak, 
D. Anurag 

Super CH over CHs WSN with static nodes 
and with mobile BS 

The fuzzy system based on energy, 
mobility, and centrality 

ns-2 First node dies, Half node 
dies, Last node dies, and end 
to end delay 

[118] Padmalaya Nayak, 
V. Bhavani 

Clustering Homogenous WSN in 
which all nodes are 
static 

Type-2 fuzzy logic based on energy, 
distance to BS, and concentration 

NetSim Simulator First node dies, No of packets 
sent to BS, Energy 
consumption, and 
Throughput 

[143] Zeynab 
Mottaghinia and 
Ali Ghaffari 

Enhances PDR and 
Reduces data 
transmission overhead 

Mobile WSN Fuzzy system based on distance and 
energy 

NA Data delivery rate and Delay  
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Any new routing protocol can be experimented, and simulated 
through any type of open-source network simulators like ns-2, ns-3 
simulator, and Java-based simulator. Apart from this, many professional 
simulators like NetSim simulator, Qualnet simulator, OMNET++

simulator, etc., can be used for practical experimentation and validation. 
Moreover, MATLAB can also be used as the simulation tool, and many 
running codes of existing routing protocols are available in Github. One 
may refer [117] to the experimental set up of the ns-2 simulator and in- 
depth analysis of a routing protocol in WSNs. A communication protocol 
can be measured or analyzed through various network performance 
parameters like average energy consumption, end to end delay, packet 
reception ratio, throughput, link characterization, network lifetime, etc. 
It can be compared with the existing protocols to prove the superiority of 
the protocol. 
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