
Reusable Component Retrieval from a Large Repository Using Word2Vec with Continuous

Bag of Words

Krishna Chythanya Nagaraju1*, Cherku Ramesh Kumar Reddy2

1 CSE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, Telangana 500090, India
2 CSE, Mahatma Gandhi Institute of Technology, Hyderabad, Telangana 500090, India

Corresponding Author Email: kcn_be@rediffmail.com

https://doi.org/10.18280/isi.260504 ABSTRACT

Received: 6 September 2021

Accepted: 25 October 2021

A reusable code component is the one which can be easily used with a little or no adaptation

to fit in to the application being developed. The major concern in such process is the

maintenance of these reusable components in one place called ‘Repository’, so that those

code components can be effectively identified as well as reused. Word embedding allows

us to numerically represent our textual information. They have become so pervasive that

almost all Natural Language Processing projects make use of them. In this work, we

considered to use Word2Vec concept to find vector representation of features of a reusable

component. The features of a reusable component in the form of sequence of words are

input to Word2Vec network. Our method using Word2Vec with Continuous Bag of Words

out performs existing method in the market. The proposed methodology has shown an

accuracy of 94.8% in identifying the existing reusable component.

Keywords:

repository, Word2Vec, search, code

component, neural network

1. INTRODUCTION

The inevitable scenario in the fast code development

situations is writing the same code over and over again. In

order to reduce time, effort, also to drastically improve the

efficiency of development process, almost all organizations

now prefer to have a mono repository to maintain the reusable

code components. A reusable code component is the one

which can be easily used with a little or no adaptation to fit in

to the application being developed. Component Based

Software Engineering (CBSE) is on high demand giving major

benefits of less workforce needed besides lines of code to be

developed for an application would be considerably reduced

using on the shelf components. The major concern in such

process is the maintenance of these reusable components in

one place called Repository, so that those code components

can be effectively identified as well as reused. Hence, the way

Repository is maintained affects the software development

process and the success of organization that is practicing

CBSE. In case of searching for a required component if the

repository is of small size, it would be a simple task but in case

where repository consists of thousands of components,

searching a required component is also a complex problem that

attracted many researchers to work on.

Word embedding allows us to numerically represent our

textual information. They have become so pervasive that

almost all Natural Language Processing projects make use of

them. Even though each line of a code component is not

exactly as a natural language sentence, yet the basic building

blocks are from natural language and does has some contextual

meaning among the words we use in every line of code snippet

that is developed. Hence in this work we considered to use

Word2Vec concept to develop word embeddings. Word

embedding algorithms like Word2Vec are unsupervised

feature extractors of words.

To properly understand the context of the word used one

need to make use of word embeddings. The vocabulary of

document considered is represented in the vector form using

word embeddings that enable capturing of context. This

context can be used for identifying the required document

more accurately as compared to general process of document

or file identification from large corpus of dataset.

Mikolov et al. [1] proposed one of the best mechanisms of

word embedding called Word2Vec with an objective to

maintain words with similar context to be occupying in close

spatial proximity. Generally, Word2Vec models are shallow

two-layered neural network architectures. Comparison

becomes easy when something has magnitude & direction

hence vector representation is considered for words as Vectors

are something which has both magnitude & direction.

The simplest word embedding one can find is one hot vector

encoding. Consider a set of words to be converted in to

numerical representation so that same can be used as an input

to a machine learning algorithm based model. Such model can

be further used in recommendation systems. The simplest

thing that can be done is giving numerical indexing to each

word in word set we considered say like, 1,2,3…some 10,000.

This can be further represented in binary format with all 0s

except one bit as ‘1’ corresponding to the position of word in

the vocabulary corpus we consider. For example

[0,0,0,..1,0,0,0..0,0] etc. But this representation has a

fundamental problem of not considering the contextual

information among a sequence of words which actually plays

in understanding the actual semantics of those set of words or

in simple processing of natural language. Another biggest

problem would be, one hot encoding is resulting in mostly

sparse vector representation. This results in poor memory

utilization though they are quick and easy way to represent

each word as real valued vectors. One hot encoding fares

poorly in case of analogy based identification of word

Ingénierie des Systèmes d’Information
Vol. 26, No. 5, October, 2021, pp. 453-460

Journal homepage: http://iieta.org/journals/isi

453

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260504&domain=pdf

representation in natural language context. Also, the size of the

vector here is directly proportional to the size of the

vocabulary corpus considered. As size grows too large,

indexing, searching would become a linear problem with more

time consumption besides sparse space issue. As these word

representations in numerical forms will be used as input for

Neural Networks in process of predictions and comparisons,

this would make Neural Networks to struggle in giving high

performance or even in training. One of the simplest

mechanisms if we want embedding of whole sentence instead

of word would be averaging real values of words in sentence.

The other advanced methods include Recurrent Neural

Network (RNN) encoder-decoder models. The RNN models

will build embedding of sentences reading word by word. The

greater advantage of word embedding lies in generalization.

The different types of word embeddings can be shown as in

Figure 1 below. The representation in higher dimension vector

space raises a question of dimensionality as, what is the

accurate number of embedding dimensions that can solve the

problem of context representation? This empirical question

always needs look for a tradeoff between accuracy and

computational complexity.

Figure 1. Different types of word embeddings

There are two main differences between Bag of Words

(BoW) or Term Frequency-Inverse Document Frequency (TF-

IDF) in keeping with word embedding:

➢ BoW or TF-IDF creates one number per word while

word embedding typically creates one vector per word.

➢ BoW or TF-IDF is good for classification documents as

a whole, but word embedding is good for identifying

contextual content.

2. RELATED WORK

New avenues are being open for machine learning to

process source code with ever growing demand of open source

repositories. Attention based neural machine transition using

encoder- decoder architecture is used to select relevant paths

while decoding by representing code as an Abstract Syntax

Tree (AST) in the work done by Alon et al. [2] named as

code2seq model. The developing of natural language

sequences from the code snippets is very useful in retrieval,

summarization or documentation of code snippets. They have

worked on two aspects – code summarization and code

captioning but did not test it on code retrieval. Shido et al. [3]

in their work entitled “Automatic source code summarization

with extended tree-LSTM” have successfully implemented

multi-way tree Long Short Term Memory to handle a node that

has arbitrary number of children and their order in ASTs

simultaneously.

In the work of Hussian et al. [4], they developed a

CODESEARCHNET corpus besides throwing open CODE

SEARCH-NET CHALLANGE. The corpus they developed

was based on different open source code works and contains

around six million functions belonging to different

programming languages like Ruby, Java, GO, JavaScript etc.

The researchers make use of ‘joint vector representation’ for

code search. A neural system is implemented using joint

embeddings of code and queries. Contextualization of token

embedding was achieved using Neural Bag of Words

architecture. Any how the underlying searching mechanism is

of Elastic search which performs traditional keyword based

search but representing rare terms was a thing missing in their

work. They do raise a question of, “can we have similar to

BERT pre training methods of Natural Language Processing

for the encoders considered in work?”

In the work done by Akbar and Kak [5], they concentrated

on mechanisms to impose ordering constraints using logic of

Markov Random Fields (MRF) on the embedded word

representations. During source code retrieval, while matching

order of words in an enquiry with words sequence in a file,

exploitation of semantic word vector generated using

word2vec is done. In the literature, we can find several BoW

based source code retrieval methods [6-13]. Authors have also

reported using word2vec for software search [14-17], The

researchers considered Correct at r C@r with abbreviation

occurring in top r ranked positions and Pearson Correlation

score to evaluate their work using popular data sets of Eclipse

454

and AspectJ.

Emphasizing on the issue of handling mismatch in code

search/retrieval using deep learning with Word2Vec was done

by Van Nguyen et al. [16], in which the researchers combined

Word2Vec with Revised Vector Space model for better code

retrieval (rVSM). rVSM computes the weight for a word based

on a new term frequency-inverse document frequency (tf-idf)

formula and a new scoring scheme among the vectors that

takes documents’ lengths into account. In their work they

claim an API code example retrieval accuracy for rVSM +

Word2Vec to be as 60.9 for top 5 recommended code snippets.

We could get a better performance through our method than

this for our data set as discussed in Results section at the end

of this paper.

Sugatadasa et al. [18] have considered Legal Domain with

25000 legal cases collected from other research works, for

document information retrieval. They proposed document

embeddings system for legal domain based on TF-IDF with

page ranking graph network and the same was used to train a

neural network model in an incremental model. In the process

they did not consider a specific legal case that is mentioned in

another legal case a greater number of times, as it may be more

significant for that case. By assigning weights to this most

relevant case for the legal case under consideration more

accurate interlinking is possible among the documents that

may enhance the overall performance Li et al. [19] work on a

structure driven method for information retrieval-based

change impact analysis (SDM-CIA). This SDM CIA

integrates both bag of words and word embedding models [20].

3. METHODOLOGY

Though the main purpose of word2vec can be seen in word

prediction yet in our case it acts as a proxy to learn vector

notations of words which will be further used to represent the

features of a reusable component and a repository is build

based on collection of these vector notations. The weights

obtained after training, between Input Layer and Hidden Layer

are the values we plan to use to represent feature set of a

reusable component. The flow chart of our idea is depicted in

Figure 2 below.

Figure 2. The flow chart of methodology we followed

The algorithm followed in implementing this work is as

shown below.

Algorithm 1_CR: Algorithm for component retrieval

using Word2Vec-CBoW method (parameter1,

parameter2.. .. parameter18):

Input: feature set consisting of 18 words, read from the

user i.e. Parameter 1 to Parameter 18 as shown in

parenthesis above.

Output: 1. If the component exists in Repository; it gives

“component matches” message along with location of

455

component to retrieve.

2. If the component doesn’t exist in the Repository, it

gives a “Not Found” or error message and gives an option

for user to upload the component.

Begin:

Step1: Read Fci {f1,f2,f3,f4…f18};//18 features selected

from GUI.

Step 2: M Fci//Trained Word2Vec-CBoW Neural

network model given with input

Step 3: wvi M(fi) where i=1,2,3,4…18;// vector for each

word in feature set is generated

 mi mean(wvi), where i=1,2,3,4…18;// mean for each

vector of word is calculated

MC (Ʃi=1to 18mi) /18;// overall mean of all vectors

generated for all features of a component

Step 4: Result = Search_AVL (Mc)// Searching for

required component in AVL tree using Mc

4a: If the mean value matches with any node value in

AVL tree,

Result Component Matches, its Location.

4b: If the mean value doesn’t match with any node of

AVL tree constructed during building of Repository,

Result Not Found

Option to upload is given.

End.

In the above algorithm, Fci stands for the 18 features set of

a component being searched. This is given as input by the user

during searching for a reusable component. M is the trained

Word2Vec-CBoW Neural Network model for which this Fci

is given as input. The model finds word vectors of each word

in the feature set like wv1,wv2…. wvi. wv18. The mean of each

such generated word embedding vector is calculated in mi and

Average of all 18 means of all 18 features is calculated in Mc.

This value in Mc is given as input for search in AVLtree

developed during building of repository to check whether the

component already exists or not. Let us try to understand the

logic behind word embedding and how this algorithm works

with an example as discussed here after in this section.

In embeddings, dense vectors are used to represent words

where in these vectors are in fact projection of word in

continuous vector space. For applying neural networks on text

data, data pre-processing is to be done to generate equivalent

integer of unique value. This unique integer is further mapped

in to a specific dimension real valued vector by embedding.

The unique integer can be generated in preprocessing of data

using Tokenizer API of Keras. The Embedding layer results in

a 2D vector with each word being embedded uniquely from

input sequence. Which means the word is represented as two

real valued components in vector.

The mathematics behind word2vec is simple to understand.

It takes one hot encoding of a specific word having “1”

corresponding to that word index and all remaining index as

zero. By multiplying weight matrix generated from random

seed and updated over iterations of training by this input vector

we would be extracting word index’s corresponding row. For

example, considering a 4th word of a phrase [0 0 0 1] as shown

below:

[0 0 0 1] * [24, 17, 6; 11, 8, 15; 16, 23, 43; 18, 9, 5]=[18,9,5]

In case of word2vec being implemented using Keras or

Tensorflow this math work is done by a special layer called as

“Ebedding Layer”. Consider the following 2 phrases simple

training set for further understanding.

Happy to see you again; Hope to see you soon.

The above two phrases can be encoded by assigning a

unique integer number based on order of appearance in

training data set as [0, 1, 2, 3, 4]; [5, 1, 2, 3, 6]. The statement

required for building embedding can be given as:

Embedding (7,2, input_length=5); where in 7 stands for

number of unique words available in training set, the argument

2 indicates size of embedding vectors and the size of each

input sequence is determined using argument input_length.

The weights of embedding layer can be obtained after network

is trained and for this example the size of matrix would be of

7X2. Let’s consider the embeddings as shown below in Table

1:

Table 1. Word Embeddings (Sample)

Index Embeddings

0 [1.2,3.1]

1 [0.4,4.1]

2 [1.0,3.1]

3 [0.3,2.1]

4 [2.3,1.5]

5 [0.9,1.7]

6 [5.6,2.4]

Accordingly, the second phrase in training can be

represented as [[0.9,1.7], [0.4,4.1], [1.0,3.1], [0.3,2.1]].

For a given word say “soon”, the index is 6 and resulting

one hot encoding of [0,0,0,0,0,0,1], multiplying this 1X7

matrix with embedding matrix of 7X2 we get required 2-

Dimensional embedding, which can be seen in this case as

[5.6,2.4]. The weight matrix of embedding gets initialized with

random values and then optimized over training phases. The

one hot encoding dimension of a given word would be

consistent with the embedding matrix as it is dependent on size

of word corpus of considered training set.

In general, the Continuous Bag of Words (CBoW) model

predicts a current word based on the context of words given

within a specific window size. The window size indicates how

many context words should be considered. The CBOW model

of Word2Vec can be depicted as shown in Figure 3 below.

Figure 3. Simple representation of CBOW model of

Word2Vec. W-2, W-1, W1, W2 are context words for word W0

The underlying architecture of Word2Vec includes a Two-

layer Neural Network for training that makes use of Back

propagation algorithm. The Neural Network would have an

Input Layer consisting of neurons in number equal to count of

words in the vocabulary (V)followed by a Hidden Layer

consisting of size equal to required dimensionality(N) of the

resulting word vectors. The last layer would be an Output layer

having neurons equal to input layer(V). The window size

indicates the total words considered including center word for

456

building context. In the above Figure 3, the window size

considered is 5 for schematic purpose. The context window

size considered for our work is 3 with vector dimensionality

expected as 300. How we happened to fix with this 300 is

explained in Results section below. The 300 means each word

would be coded in to a vector size of 300 as shown in Figure

6 in following pages. The learning of parameters would be

based on Backpropagation Algorithm and SoftMax activation

function in output layer. The schematic representation of

Neural Network model considered can be as shown in Figure

4 below. One hot encoding of word is considered as input with

V dimensions that is equal to number of total words, which

happens to be 18 in feature set. WVXN represents Weight matrix

between input layer and Hidden layer whereas W’NXV

represents weight matrix between hidden layer and output

layer. As mentioned earlier that we use Word2Vec model as

proxy as our concentration is on N dimension representation

of word but not on the output layer.

Figure 4. The schematic view of Neural Network considered

in Word2Vec model we used with window size=3

The work was carried out by considering a data set of 40000

components. The feature vector of reusable component

constitutes of following information:

1.Operating System; 2. Programming Language; 3. Return

Type; 4. No of Parameter 5. Type of Parameters; 6. Recursion;

7. Development Model; 8. Already Modified; 9. Time

Complexity; 10. Space Complexity; 11. Reusability; 12. Well

Documented; 13. Reliability; 14. Risk Factor; 15. Uploaded

file type; 16. Data info; 17. Domain; 18. Lines of Code; 19.

License; 20. Name of Program.

Each component is represented using a feature vector of 20

features set. For training purpose of Neural Network only 18

features were considered as “name of the program” (20th

feature) and “licensing” (19th features) were not exactly

contributing to identification of component very specifically.

The feature vector is a collection of specific words which

clearly distinguishes a code component. The considered 18

features are converted to vectors, which further will be given

as input to neural network.

The following is a sample entry of one reusable

component’s feature set as given by a user, let’s call it Fc:

1.Linux; 2. Ruby; 3. Derived data type; 4. Zero; 5. User

defined data type; 6. Non recursive; 7.RAD; 8. Yes; 9. Nlogn;

10. One; 11. Fully reusable; 12. Excellent; 13. Up to Eighty;

14. High risk; 15. Code; 16. File input; 17. Banking; 18. Up to

hundred.

All the feature set of 40000 components considered is stored

in a CSV file as shown in Figure 5 below, where each row

indicates one component’s feature vector. Using Word2Vec

technique the vector representation of each word is identified

and these values are averaged to find equivalent vector value

of one row, which is equal to the vector value representation

of one component. The components are represented as a single

mean value of word vector generated for features considered.

These mean values are stored in an AVL tree data structure at

the time of creation of repository.

Figure 5. Snapshot of dataset used in csv file format for

training

When the user wants to search for a specific component, the

user is asked to select the features of the component he is

looking for, from the dropdown list created for each feature

element in the GUI that is created using Tkinter. This leaves

no scope for user to enter random data. Thus, makes it easy to

handle data avoiding any necessity of cleaning and all fields

are made mandatory so that no null values are taken. The

entered feature set is a collection of words so using the already

trained model the average value of vector representation of this

collection of words is considered. The resulting average value

now indicates the vector value of the component being search.

Using AVL tree this value is simply checked whether exists in

the repository or not. If it is there it means the required

component exists else it means, the required component being

searched for is not available in the component repository. For

the purpose of experimentation, we have collected many code

components from different resources on line such as

sourceforge.net, Github etc. sites and as our methodology is

completely new it requires building own repository.

Let us consider for step 1 the input is given as shown in

example earlier called as Fc for the algorithm 1 described

above. This is fed as an input to the pre trained model M

generating word vector of each feature.

1.Linux 2.Ruby 3.Derived data type 4.zero 5.User defined

data type 6.Non recursive 7.RAD 8.Yes 9.Nlogn 10.One

457

11.Fully reusable 12.Excellent 13.Up to Eighty 14.High risk

15.Code 16.File input 17.Banking 18.Up to hundred.

The vector representation of a word indicating “Language”

feature of a specific component as considered in Fc, which is

“Ruby” was observed to be as shown in Figure 6 below:

Figure 6. Sample 300-dimension vector generated for a

Word of “ruby” indicating “Language” feature of a

component
(Owing to space only a part of vector shown)

The values in the array in above figure indicate the 300

dimensions representation of word representing one feature of

the component. This also signifies that we considered 300

neurons in the hidden layer of Word2Vec neural network.

These hidden layer neurons are trained using back propagation

algorithm. The authors of this work have done empirical study

using size as 50,100,200,300,400 and the results obtained

showed that when the size considered is 300 the model was

giving better accuracy and hence, we stick on to 300-

dimension vector representation.

Table 2 shows mean values obtained for the vector

representation of each word in the feature set consisting of 18

features as shown in second column of table for the component

being searched for. The mean value of all these 18 values is

observed to be -0.007391004. This value now represents one

reusable component.

The mean value of vector generated for all words of the

feature set would be a value of -0.007391004. This becomes

the first node in the AVL tree at the time of repository creation

and further values of second, third components etc. would be

inserted under the root node and height balancing of AVL tree

happens. While searching, this value generated like -

0.007391004 is then checked for its availability in the

repository built using AVL tree. The Figure 7 represents word

vectors generated for features of first component considered

from training set as shown in Figure 5. The mean value of each

vector generated for each feature is calculated and further

mean value of all such 18 features is calculated as explained

in step 2 and step 3 of algorithm 1 above. This final mean value

becomes the representation of a single component. Figure 8

shows the mean value of each component that would be stored

in AVL tree. Owing to space constrains only values of a few

(10) components are being shown in Figure 8. This means

0.007711691 value now represents first component as shown

in first row of CVS file in Figure 5 and 0.0077005713

represents second component from Figure 5 and so on.

Considering inserting of first 5 values from the above mean

values in to the AVL tree, the generated AVL tree after height

balancing looks as in Figure 9.

Figure 7. Generated vector representation of features

belonging to first component (Fc) from training set shown in

Figure 5

Table 2. The table shows mean values of vectors generated by Word2Vec of each feature element for a component being

searched for

Sl.No. Feature Sample Considered Mean of Vector generated

Feature1 Operating System Linux -0.0068095303

Feature 2 Programming Language Ruby -0.006214711

Feature 3 Return Type Derived data type -0.0069797197

Feature 4 No.Of Parameters zero -0.0070498325

Feature 5 Type of Parameters User defined data type -0.007185216

Feature 6 Recursion Non recursive -0.0070020645

Feature 7 Development Model RAD -0.0056332634

Feature 8 Already Modified Yes -0.0066335257

Feature 9 Time Complexity n log n -0.0056920093

Feature 10 Space Complexity One -0.0058320006

Feature 11 Reusability Fully reusable -0.007200637

Feature 12 Well Documented Excellent -0.0071973926

Feature 13 Reliability Up to Eighty -0.00783842

Feature 14 Risk Factor High risk -0.008600807

Feature 15 Uploaded file type Code -0.008872024

Feature 16 Data info File input -0.009424939

Feature 17 Domain Banking -0.009272366

Feature 18 Lines of Code Upto hundred -0.009599611

458

Figure 8. Mean values calculated for word vectors of 10

components considered for training using CSV file as shown

in Figure 5

Figure 9. AVL Tree generated after insertion of mean values

of vector representation for 5 components

While the tree is being generated or repository being built,

in case if the mean value generated matches with any node

value already inserted in the AVL tree, it would display as

“Component Already Existing”. For step 4 in algorithm above,

while searching for component, if considered for an existing

component, we get a message like “Component matches” and

gives the location of component in system enabling easy

retrieval. In case of non-existing component, it gives a “Not

Found” message and also the option for uploading component

is given to the user.

4. IMPLEMENTATION RESULTS AND DISCUSSIONS

The experiments were carried out with following

specifications:

Total components Considered: 40000; Embedding Size:

300.

Table 3. The results of the experiments done using

Word2Vec with CBOW

 Case 1 Case 2 Case 3

Components

count
40000 40000 40000

Training Data 28000 32000 24000

Testing Data

(Existing/Total)
8000/12000 5780/8000

12360/1

6000

True Positive 6820 4480 11190

False Positive 390 840 1240

True Negative 4560 2160 2900

False Negative 230 520 670

Precision 0.94 0.84 0.90

Recall 0.96 0.89 0.94

Accuracy 0.948 0.83 0.88

The Table 3 records Accuracy obtained with different

experimentations done during this work. We considered 3

cases with different count of Existing components as

8000,5780,12360 respectively for a total testing component

input of 12000,8000,16000 respectively as shown in Row 3-

Testing Data, of Table 3. Accuracy of 0.948 or 94.8% is

calculated as ratio of sum of True Positives and True negative

to the total output samples i.e. (6820+4560)/12000 which is

11380/12000 resulting in 0.948.

Table 4 below shows comparison of accuracy as obtained

by our method with other existing methods.

Table 4. Comparing results of experimentation with other

existing methods

Sl.No Model Used Accuracy

1 Word2Vec [16] 29.5%

rVSM 56.5%

rVSM+Word2Vec 60.9%

2 Bag of words with count vectorizer [21] 86%

3. Word2Vec using CBoW method (Present

research work) from Table 3.

94.8%

With the above table, it is clear that our method out

performs existing method in the market as we are able to get

an accuracy of 94.8% in best case making use of vector

representation of words taken from Word2Vec model for our

data set whereas the other researchers method using

Word2Vec with Revised Vector Space model has achieved

only 60.9% or 86% when researchers used Bag of words with

count vectorizer.

5. CONCLUSIONS

In this paper, a novel approach of reusable component

repository maintenance is reported. The work used AVL tree

having nodes containing mean values of vector representation

for component’s features in building repository. The user

chooses the features of the component searching for, from the

drop down list of each feature constituents from the GUI. The

words representing features are given as input to already

trained neural network model developed using Word2Vec

with CBoW method. The word vector for each word in feature

set is generated and the mean of all word vectors as well as

mean of whole feature set is calculated for that component.

The AVL tree constructed while building Repository is

searched for this mean value to check whether the component

exists in the repository or not. If the mean value matches with

any node value in AVL tree, it means component is present

and the corresponding component matches message is given

as an output along with the location of component to retrieve.

The work was carried out on a data set of 40000 components’

features. This work would be very much helpful for developers

who need to code reliable large programs following

component based software engineering process as by using the

developed model, identifying a reusable component in large

repository becomes easy. The work resulted in better

performance with accuracy of 94.8% using Word2Vec with

CBoW and AVL tree, as compared to existing proven

mechanisms of component retrieval like rVSM, Bag of Words

with vector quantization. The authors plan to refine this work

by more emphasis on identifying number of parameters for

representing a component by using PCA or other feature

extracting mechanisms.

REFERENCES

[1] Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013).

459

Efficient estimation of word representations in vector

space. arXiv preprint arXiv:1301.3781.

[2] Alon, U., Brody, S., Levy, O., Yahav, E. (2018).

Code2seq: Generating sequences from structured

representations of code. arXiv preprint

arXiv:1808.01400. https://arxiv.org/abs/1808.01400

[3] Shido, Y., Kobayashi, Y., Yamamoto, A., Miyamoto, A.,

Matsumura, T. (2019). Automatic source code

summarization with extended tree-LSTM. In 2019

International Joint Conference on Neural Networks

(IJCNN), pp. 1-8.

https://doi.org/10.1109/IJCNN.2019.8851751

[4] Husain, H., Wu, H.H., Gazit, T., Allamanis, M.,

Brockschmidt, M. (2019). Codesearchnet challenge:

Evaluating the state of semantic code search. arXiv

preprint arXiv:1909.09436.

https://arxiv.org/abs/1909.09436

[5] Akbar, S., Kak, A. (2019). SCOR: source code retrieval

with semantics and order. In 2019 IEEE/ACM 16th

International Conference on Mining Software

Repositories (MSR), pp. 1-12.

https://doi.org/10.1109/MSR.2019.00012

[6] Zhou, J., Zhang, H., Lo, D. (2012). Where should the

bugs be fixed? more accurate information retrieval-based

bug localization based on bug reports. In 2012 34th

International Conference on Software Engineering

(ICSE), pp. 14-24.

https://doi.org/10.1109/ICSE.2012.6227210

[7] Saha, R.K., Lease, M., Khurshid, S., Perry, D.E. (2013).

Improving bug localization using structured information

retrieval. In 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

pp. 345-355. https://doi.org/10.1109/ASE.2013.6693093

[8] Sisman, B., Kak, A.C. (2013). Assisting code search with

automatic query reformulation for bug localization. In

2013 10th Working Conference on Mining Software

Repositories (MSR), San Francisco, CA, USA, pp. 309-

318. https://doi.org/10.1109/MSR.2013.6624044

[9] Rao, S., Kak, A. (2011). Retrieval from software libraries

for bug localization: a comparative study of generic and

composite text models. In Proceedings of the 8th

Working Conference on Mining Software Repositories,

pp. 43-52. https://doi.org/10.1145/1985441.1985451

[10] Sisman, B., Kak, A.C. (2012). Incorporating version

histories in information retrieval based bug localization.

In 2012 9th IEEE Working Conference on Mining

Software Repositories (MSR), Zurich, Switzerland, pp.

50-59. https://doi.org/10.1109/MSR.2012.6224299

[11] Moreno, L., Treadway, J.J., Marcus, A., Shen, W. (2014).

On the use of stack traces to improve text retrieval-based

bug localization. In 2014 IEEE International Conference

on Software Maintenance and Evolution, Victoria, BC,

Canada, pp. 151-160.

https://doi.org/10.1109/ICSME.2014.37

[12] Wong, C. P., Xiong, Y., Zhang, H., Hao, D., Zhang, L.,

Mei, H. (2014). Boosting bug-report-oriented fault

localization with segmentation and stack-trace analysis.

In 2014 IEEE International Conference on Software

Maintenance and Evolution, Victoria, BC, Canada, pp.

181-190. https://doi.org/10.1109/ICSME.2014.40

[13] Wang, S., Lo, D. (2014). Version history, similar report,

and structure: Putting them together for improved bug

localization. In Proceedings of the 22nd International

Conference on Program Comprehension, pp. 53-63.

https://doi.org/10.1145/2597008.2597148

[14] Ye, X., Shen, H., Ma, X., Bunescu, R., Liu, C. (2016).

From word embeddings to document similarities for

improved information retrieval in software engineering.

In Proceedings of the 38th International Conference on

Software Engineering, pp. 404-415.

https://doi.org/10.1145/2884781.2884862

[15] Uneno, Y., Mizuno, O., Choi, E.H. (2016). Using a

distributed representation of words in localizing relevant

files for bug reports. In 2016 IEEE International

Conference on Software Quality, Reliability and Security

(QRS), Vienna, Austria, pp. 183-190.

https://doi.org/10.1109/QRS.2016.30

[16] Van Nguyen, T., Nguyen, A.T., Phan, H.D., Nguyen,

T.D., Nguyen, T.N. (2017). Combining word2vec with

revised vector space model for better code retrieval. In

2017 IEEE/ACM 39th International Conference on

Software Engineering Companion (ICSE-C), Buenos

Aires, Argentina, pp. 183-185.

https://doi.org/10.1109/ICSE-C.2017.90

[17] Sachdev, S., Li, H., Luan, S., Kim, S., Sen, K., Chandra,

S. (2018). Retrieval on source code: a neural code search.

In Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming

Languages, pp. 31-41.

http://doi.acm.org/10.1145/3211346.3211353

[18] Sugathadasa, K., Ayesha, B., Silva, N.D., Perera, A.S.,

Perera, M. (2018). Legal document retrieval using

document vector embeddings and deep learning.

Springer, Cham. https://doi.org/10.1007/978-3-030-

01177-2_12

[19] He, Y., Li, T., Wang, W., Lan, W., Li, X. (2018). A

structure-driven method for information retrieval-based

software change impact analysis. Scientific

Programming, 2018: 5494209.

https://doi.org/10.1155/2018/5494209

[20] Vankudoth, R., Shireesha, P. (2016). A model system for

effective classification of software reusable components.

In 2016 International Conference on Innovations in

Information, Embedded and Communication Systems

(ICIIECS), pp. 978-981.

[21] Rokon, M.O.F., Islam, R., Darki, A., Papalexakis, E.E.,

Faloutsos, M. (2020). Sourcefinder: Finding malware

source-code from publicly available repositories in

github. In23rd International Symposium on Research in

Attacks, Intrusions and Defenses ({RAID} 2020), pp.

149-163.

460

