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Abstract—In the age of automation, a growing number of
devices require high dimensional data to increase the reliabil-
ity of the machines to better predict and classify objects for
autonomous decision-making. 3D object detection directly links
to environmental interpretation and therefore builds the base for
prediction and movement planning for autonomous systems. With
greater computing and storage capacities at the edge level, higher-
density data can be captured and analyzed, and hence better
predictability of natural environments is achieved. Convolutional
Neural Networks are becoming increasingly important for object
detection and tracking in many autonomous systems due to the
improvement of affordable edge-computing devices capable of
working with higher-dimensional data, such as LiDAR sensors,
in recent years.

Although the capabilities of edge-computing devices are grow-
ing, the computational requirements for real-time applications
are also rising. This paper proposes two types of optimizations
to the networks: pruning and quantization. The proposed op-
timizations are applied to a base model trained on the KITTI
dataset, which shows an average inference speed-up of up to 20%
while minimizing the loss of performance.

Index Terms—Network Optimization, CNN, Point-Cloud, 3D
Object Detection, Autonomous Systems

I. INTRODUCTION

One of the most significant problems the robotics commu-
nity still needs to address is object detection in dynamic, real-
time situations. A dynamic situation refers to a work setting
involving a human operator that only partially controls a physi-
cal or technical process independent of the system’s dynamics
[1]. A real-time situation involves an action by the system
with no noticeable delay from its effect (or consequence)
[2]. A solution should incorporate segmentation, tracking, and
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classification elements and enable the insertion of new object
classes without requiring a specialist’s specification of new
models.

The availability of dense 3D sensors in recent years presents
the perfect opportunity to investigate an extensive dataset
method to track categorization. With these sensors, indepen-
dent of object type, every item in the environment may be
segmented and tracked using data. This works particularly
well in the context of driving, as objects actively try to keep
well separated from one another. Identifying an item that has
been appropriately segmented and tracked can offer hundreds
or thousands of training examples with only one key press.
Tracking and segmentation considerably simplify the process
of labeling massive volumes of data.

In the realm of autonomous driving, object detection tech-
nology is also crucial. The area of autonomous driving has
long been a focus of automotive research. Driverless and
Advanced Driver Assistance Systems (ADAS) are the two
categories of autonomous driving systems that currently exist
[2]. The latter focuses on helping the driver, lowering the
driver’s stress while driving, and enhancing vehicle safety.
This form focuses on partial autonomous automobile driving
to reduce the driver’s workload. Both use various onboard
sensors to gather information, integrate it with map data
for system calculations, and direct the vehicle to arrive at
a preset location. Artificial intelligence developments like
those in computer vision and deep learning are crucial to the
advancement of autonomous driving.



A. Point-Cloud Data

Point cloud data is a collection of physical points in space.
The most notable feature of point cloud data is depth informa-
tion, which can be used to perceive the objects’ exact location
and better understand the surroundings using point cloud data.
Due to the recent advancements in low-cost LiDAR (Light
Detection and Ranging) sensors, point-cloud processing is
becoming increasingly crucial for object detection and tracking
in autonomous driving and many other applications.

One benefit of object detection using point clouds is scale
consistency in a three-dimensional environment. One of the
most well-known sensors for producing 3D data of objects
to characterize forms and locate items is LIDAR. Many well-
known, cutting-edge 3D object detectors, including YOLO,
PointNet, and 3DOP, have recently been proposed for 3D
object detection. Further, real-time video stream processing
has also been used to classify objects.

Finding all Regions of Interest in the image and determining
their locations is the goal of object detection. Approximating
an object’s size and location in a three-dimensional environ-
ment is the goal of 3D object detection. In contrast, 3D object
classification entails classifying detected items according to
their shape, size, volume, and various other physical features.

Self-driving cars often employ LiDAR (Light Detection and
Ranging) alongside many other cameras and sensors placed in
various parts of the car to gather perceptual data. The visual
data is then analyzed and localized to detect items like lanes,
automobiles, and pedestrians. The capacity of computers to
interpret visual data has increased dramatically compared to
conventional approaches thanks to the rapid development of
deep learning and artificial intelligence technologies, and sev-
eral businesses have started to produce artificial intelligence-
specific processors to enable Edge Computing.

LiDAR, cameras, and millimeter-wave RADAR are com-
mon sensor types used in intelligent driving systems. The
advantages of LiDAR include 3D modeling, a broad detection
area, and excellent detection precision. Deep learning target
identification systems incorporating LiDAR detectors are a
popular area of research. The existing deep learning-based
LiDAR detection systems still have underlying issues that need
to be resolved for broader acceptance.

The first challenge is in the kind of data generated by a
LiDAR. Typical deep learning target identification algorithms
cannot be employed directly for LiDAR perception because
the data generated by the LiDAR sensor is a sparse point
cloud, which is less dense than the picture output by the
camera. The second challenge is the three-dimensional data
produced by the point cloud by LiDAR, which increases the
computational requirements due to the addition of the third
axis in the coordinate system.

Autonomous systems need high dimensional data to im-
prove reliability and better forecast environmental change for
autonomous decision-making. The foundation for prediction
and movement planning for autonomous systems is built by
the direct connection between 3D object detection and environ-
mental interpretation. Higher-density data can be collected and

analyzed at the edge” level thanks to recent improvements in
processing and storage capacities, improving the predictability
in natural settings. Despite some promising work in this field,
reliable 3D object detection remains an unresolved challenge.

CNNs are notorious for high computational requirements.
Network Optimization is the optimization of the CNN network
structure and its associated weights to improve the model’s
performance. This paper proposes Network Optimizations for
Deep-Learning solutions involving large Convolutional Neu-
ral Networks (CNNs) and studies the effects of using such
techniques.

II. LITERATURE SURVEY

In this section, some notable prior and existing methods that
have been proposed and implemented by various sources will
be described briefly.

Martin Simon, Stefan Milz, Karl Amende, and Horst-
Michael Gross proposed Complex-YOLO, a 3D object de-
tection CNN that uses only point clouds [3]. It is based on
YOLOV2, a fast object detection network for 2D RGB images.
The authors propose a specific Euler-Region Proposal Network
(E-RPN) that is capable of estimating the pose of the object by
the addition of an imaginary and real fraction to the regression
network. The experiments were carried out on the KITTI [4]
dataset.

Fernando Julio Cendra, Lan Ma, Jiajun Shen, and Xiaojuan
Qi present a framework for unsupervised 3D recognition
[5]. The proposed SL3D framework solves two objectives:
clustering and learning feature representation to generate
pseudo-labeled data. It is a wide-ranging framework that may
be used for many 3D recognition tasks, including semantic
segmentation, object detection, and classification. Its goal is
to overcome the scalability limitations in 3D recognition tasks
caused by its requirement of using annotations for model
training. The efficiency of the SL3D framework is confirmed
through extensive experiments.

Y. Shen et al. present a new 3D object detection paradigm
called ImLiDAR which seeks to combine data from two cross-
sensors, LIDAR and camera sensors [6]. The proposed method
uses a cross-sensor dynamic message propagation module to
combine the best of multi-scale image and point features. In
order to deal with the irregular nature of the classification
and localization confidences as well as the sensitivity of hand-
tuned hyperparameters, the paper also puts forth a direct set
prediction problem that allows the creation of a set-based
detector that is effective. The results show clear improvements
in ImLiDAR over 23 state-of-the-art 30D methods on SUN-
RGBD and KITTI datasets.

A. Tamajo et al. present a graph convolution-based unit
called the Shrinking unit for designing CNN-like 3D point
cloud feature extractors [7]. According to the authors, the
difference in performance between automated point cloud
systems and their picture counterparts is mainly due to the
lack of design inspiration from the image domain. Using
internal, local, and global correlations between points in the
point cloud, the suggested Shrinking unit may be stacked



horizontally and vertically to extract features from the point
cloud data. The method’s performance was evaluated using
the ModelNet-10 benchmark dataset, where it achieved a
classification accuracy score of 90.64%.

Y. Yao et al. propose a knowledge distillation method for 3D
point cloud pre-trained models to acquire knowledge directly
from 2D representation learning models, specifically the image
encoder of CLIP [8]. The authors introduce a cross-attention
mechanism to extract concept features from the 3D point
cloud and compare them with the semantic information from
2D images. The proposed method is evaluated on various
downstream tasks, which shows that it outperforms the state-
of-the-art 3D pre-training methods on synthetic and real-world
datasets.

III. METHODOLOGY

This section details the model’s architecture, the data
sources used, and the optimization techniques utilized. The
dataset has a 3D point cloud data with the images and cali-
bration files for data points which are taken using a data loader.
The target class contains three categories: Car, Pedestrian, and
Cyclist. The preprocessing step includes random rotation (20-
degree range), scaling (5% range), and horizontal flipping. The
batch size of the data loader is set according to the VRAM
in the GPU. The data is divided into training, testing, and
validation sets.

YOLOV4 is one of the most popular object detection archi-
tectures based on the Darknet Framework [9]. The network
architecture uses the mish activation function while applying
batch normalization to the YOLO architecture layers. Upsam-
pling and Downsampling have been used to improve the speed
and stability of the model. The Adam optimizer has been
chosen since it best combines the properties of AdaGrad and
RMSProp algorithms that can handle sparse gradients on noisy
problems. The training is performed for 150 epochs.

A. Optimization Techniques

Large CNN networks often have suboptimal runtime per-
formance due to high memory and processing power re-
quirements, drastically increasing the inference speed. Pruning
and quantization are often applied to improve energy savings
and inference speed without significantly increasing accuracy
losses in the model. The improvement in efficiency signif-
icantly affects the affordability of edge devices capable of
autonomous driving and other complex tasks.

1) Pruning: Pruning involves the elimination of certain
weights to decrease inference requirements and reduce the
model size. There are two main pruning technique types:

1) Structured pruning: involves eliminating weights by ac-
tively modifying the network, i.e., the total number of
parameters is reduced , as shown in Fig. 1. In this paper,
two techniques have been implemented:

a) Ln-Structured Pruning
b) Random-Structured Pruning

2) Unstructured pruning: involves eliminating weights by

zeroing any weights that do not significantly affect

the prediction, as shown in Fig. 2. In this paper, two
techniques have been implemented:

a) L1-Unstructured Pruning
b) Random-Unstructured Pruning

Pt

Fig. 1. Structured Pruning

Fig. 2. Unstructured Pruning

Both types of pruning techniques have been studied in this
paper. Pruning was performed to eliminate 2, 4, 7, 10, 15,
20, 30, and 40 percent of nodes/weights. Section IV contains
more details about the results and analysis.

2) Quantization: Quantization involves lowering bit-widths
from floating-point precision (to INT8 and FLOAT16) by
approximation, drastically reducing the memory requirements.
There are two main quantization technique types:

1) Post-Training Quantization (PTQ): involves conversion
of bit-widths after the complete model has undergone
training. There are two techniques that are commonly
used:

a) Post-Training Quantization - Static (PTQ-S): in-
volves fusion of activation functions into preceding
layers of the model wherever possible. Calibration



dataset is required for determination of optimal
quantization parameters. PTQ-S is most effective
when compute efficiency needs to be increased and
memory bandwidth is low.

b) Post-Training Quantization - Dynamic (PTQ-D):
involves conversion of bit-widths after the com-
plete model has undergone training, i.e., weights
are quantized ahead of time. PTQ-D is most effec-
tive when loading weights from memory dominates
the model execution time.

2) Quantization-Aware Training (QAT): involves conver-
sion of bit-widths during the training process, i.e., be-
tween epochs. The models influence quantization for
achieving higher accuracy. During training, the weights
are calculated with floating-point precision while simul-
taneously applying rounding and clamping to simulate
the lower bit-width. After conversion, the activation
functions and weights are quantized while the activation
functions are fused onto the preceding layers. There are
three modes of QAT:

a) Static
b) Dynamic
c) Weight-only
PTQ-D techinique has been studied in this paper. PTQ-D
was applized on the Linear layers of the network. Section IV
contains more details about the results and analysis.

B. Dataset

The KITTTI dataset [] was used in the implementation. The
KITTI dataset consists of more than 12919 images. Four
datasets were used for training the model which include:

o Velodyne Point-Cloud Data: 3D point-cloud data that
serves as training and testing data for the model. Totally
29GB in size.

o Left-Side Color Image Data: 2D images (of only left-side
perspective) for prediction visualization. Totally 12GB in
size.

o Camera Calibration Matrices: for prediction visualization.
Totally 16MB in size.

o Training labels: input labels from training. Totally SMB
in size.

The dataset consists of three categories: Cars, Pedestrians,

and Cyclists. In this paper, the prediction precision, recall, and
fl-score are averaged across the classes.

C. Testing Environment

Testing was performed on a system with the following
specifications:

e CPU: i7 8th Gen (non-overclocked)

e« GPU: NVIDIA GTX 1070 Ti (8GB GDDR5 VRAM)
(non-overclocked)

« RAM: 16GB

e OS: Ubuntu 18.04 LTS (64-bit)

The tests are performed on a random sample consisting of
1414 iterations and then averaged out.

IV. RESULTS & ANALYSIS

This section shows the results of the tests performed and
also analyzes the results obtained. The tests were performed
on a system with specifications as mentioned in Section III-C.
The tests include results from training a base model, which
was pruned at 2, 4, 7, 10, 15, 20, 30, and 40 percent of
nodes/weights. The tests are performed on a random sample of
1414 iterations and then averaged out. The confidence thresh-
old has been set to 85%, i.e., after pruning, only predictions
with more than 85% confidence will be considered.

The base model and the pruned models were again tested
with PTQ-D enabled only for the Linear layers of the network.

A. Comparison of Average Inference Times

The average inference time is the amount of time a model
takes to make a prediction (i.e., produce an output) from
the time it receives the input. Network Optimization aims to
minimize the inference time, i.e., the lower the inference time,
the better the optimization. This section gives all inference
times in milliseconds (ms).
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Fig. 3. Average inference times using Ln-Structured Pruning Technique

Fig. 3 shows the average inference times for the given
percentage of pruned nodes using the L1-Unstructured Prun-
ing technique. It includes the average inference times with
quantization enabled and disabled, however, the difference is
not significant. Here, only four pruning results are shown as
the rest of the pruned models have low confidence. From
this graph, we can observe that the average inference times
are significantly lesser and gradually fall with increasing
pruning percentage. At 10% pruning, the average inference
time dropped by approximately 20%.

Fig. 4 shows the average inference times for the given
percentage of pruned nodes using the Random-Structured
Pruning technique. Here, due to low confidence five of the
eight pruning results have been omitted, i.e., greater than 7%.
From this graph, we can observe that the inference times are
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Fig. 4. Average inference times using Random-Structured Pruning Technique

gradually falling. At 7% pruning, the average inference time
dropped by approximately 20% again.
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Fig. 5. Average inference times using L1-Unstructured Pruning Technique

Fig. 5 shows the average inference times for the given
percentage of pruned nodes using the L.1-Unstructured Pruning
technique. This is the first pruning technique with all eight
pruning levels. From this graph, we can observe that the
inference times are significantly lesser for the 2, 10, 15, 20, 30,
and 40 percent pruning levels with respect to the base model’s
inference time. At 40% pruning, the model steeply declines in
the inference times. However, this may also be a sign of high
loss.

Fig. 6 shows the average inference times for the given
percentage of pruned nodes using the Random-Unstructured
Pruning technique. It includes the average inference times with
quantization enabled and disabled. Due to low confidence, four
of the eight pruning results have been omitted, i.e., greater
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Fig. 6. Average inference times using Random-Unstructured Pruning Tech-
nique

than 10%. From this graph, we can observe that the inference
times are significantly lesser for the 2, 10, 15, 20, 30, and
40 percent pruning levels with respect to the base model’s
inference time. At 40% pruning, the model steeply declines in
the inference times. However, this may also be a sign of high
loss. At 40% pruning, the average inference time dropped by
approximately 12%, which is the lowest compared to other
techniques at much lower levels of pruning.

With each of the techniques, it is observable that the average
inference time is considerably reduced with an increase in
the percentage of nodes/weights pruned. Quantization further
reduces the average inference time by a small amount in some
cases.

B. Comparison by FI-Scores

The Fl-score is defined as the harmonic mean of the
precision and recall of a model. It is a metric that is often
used to measure the performance of a model.

From Fig. 7, it can be observed that the F1-scores decrease
as the percentage of nodes/weights pruned is increased. This
also causes a fall in confidence in the prediction of the
model, which inadvertently increases the loss in a model. L1
Unstructured has the most gradual decrease in fl-scores among
the four techniques. In contrast, the Fl-scores of the other
three techniques — namely Ln Structured, Random Structured,
and Random Unstructured — have a steep decline indicating a
dramatic rise in loss.

Among the four techniques, L1-Unstructured performs the
best with an Fl-score of 0.785, at the highest pruning percent-
age of 30% while providing a speed-up of 3.1%. However,
among structured pruning techniques, Ln-Structured pruning
performs the best with an Fl-score of 0.745, at the highest
pruning percentage of 2% while providing a speed-up of 6.1%.
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Fig. 7. Fl-scores of base model and pruned models at various pruning levels

V. CONCLUSION

This paper describes two types of network optimizations
— pruning and quantization — in detail. Pruning and quanti-
zation were then applied to improve the inference time of
the model while simultaneously measuring its performance
by extensively testing the model. The comparison of four
pruning techniques in this paper yields a trade-off criteria for
optimizing CNNg, i.e., inference speed vs performance for 3D
object detection using point cloud data.

The tests revealed that the L1-Unstructured pruning tech-
nique performs the best with an Fl-score of 0.785, at the
highest pruning percentage of 30% while providing a speed-
up of 3.1%. However, among structured pruning techniques,
Ln-Structured pruning performs the best with an Fl-score
of 0.745, at the highest pruning percentage of 2% while
providing a speed-up of 6.1%. These results indicate that a
significant improvement in inference time can be obtained
without drastically sacrificing the model’s performance.

This work can be further extended in the following four
ways:

1) Implementing other pruning techniques (both structured
and unstructured) that can be applied to the model and
tested to check for better inference times without loss
in performance.

2) Implementing both unstructured and structured pruning
techniques on the same model at varying pruning per-
centages.

3) Implementing other quantization techniques, such as
Quantization-Aware Training (QAT).

4) Implementing other network optimization techniques,
such as Factorization and Convolution Optimization, to
optimize the model further while minimizing loss in
performance.
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