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ABSTRACT: 

 Recommendation system provides the facility to understand a 

person's taste and find new, desirable content for them 

automatically based on the pattern between their likes and 

rating of different items. Recommendation systems are mainly 

employed in applications such as online market, which works 

with big data. Performing data mining on big data is a tedious 

task due to its distributed nature and enormity. There are 

humanely overwhelming number of items for us to inspect, 

evaluate and choose from. This poses a huge challenge, since 

overwhelming the customers with huge catalog of items out of 

which the major portion of items are unrelated to user 

preferences.  

There is an imminent need for a recommendation system that 

eases the process of choosing products by the user and thereby 

enriching the user experience. To overcome this problem, a 

recommendation system that uses multiple ML algorithms, a 

hybrid version of content based filtering and collaborative 

item-item filtering algorithm is implemented so as to achieve 

better accuracy in recommendations. The project is aimed to 

result in a generic recommendation engine suitable for using 

with any type of items irrespective of domain and datasets. 

Keywords—user preferences, big data,item-item collaborative 

filtering 

1. INTRODUCTION

Recommender Systems are tools that emerged in the 90s 
which are commonly defined as software tools and techniques 
used to provide suggestions for items to users. 

Recommendation algorithms are mostly used on e-commerce 
web sites like Amazon, Flipkart and Myntra where they make 
use of customer’s interests and display a subset of items. 
Many of these algorithms use only the items that are 
purchased or viewed by customer previously. 

But other attributes like demographic data, favorite items, 
favorite sellers, artists can also be used for much effective 
recommend dation. Recommender systems are very good at 
handling the information overload problem, they provide a 
customized, personalized set of recommendations for each 
specific user thereby showing them with content that is 
relevant to them, thereby easing the amount of effort the users 

need to exert to filter and find items that they desire. These 
systems act as means of assisting the social process of using 
others suggestions, reviews when there is no previous 
knowledge at the user-side. These systems can either make use 
of collaborative filtering, content based filtering or hybrid 
filtering. 

People have always relied on other people’s suggestions for 
decision making whenever there are many options in order to 
make the best decision. In the last decade or so,the amount of 
digital information has grown in an exponential manner, 
leading to huge information that is mostly not rated and 
arranged properly. Information overload is difficulty in 
understanding an issue and making decisions when one has 
too much information about that issue, it is generally 
associated with excessive quantity of information. Information 
overload generally occurs when a person is exposed to huge 
and more information than the brain can process at one time.” 
As more and more complex information is taken in by us in a 
very less amount of time and we happen to have more options 
laid out in front of us, our brains start to panic, resulting in us 
losing the ability to make good decisions.  

These recommendation algorithms find a set of customers 
who also purchased a similar subset of items that are also 
purchased by the user. Then concerned ratings are also 
considered for filtering. Then finally all these items are 
aggregated from the previously computed similar set of 
customers, in the meanwhile all the items that are already 
previously purchased by the user are eliminated, in turn 
showing the remaining list of items. There are two types of 
such algorithms, these are collaborative filtering and cluster 
models. Other less popular versions are search based methods 
which focus on finding similar items but not similar 
customers. Amazon’s item-item collaborative filtering 
algorithm is one such example of this. 

2. LITERATURE SURVEY

Hybrid Recommendations: - 

In this paper [7] the author details the intricacies of hybrid 
recommendation systems. Hybrid algorithms are implemented 
in several ways either by making collaborative-based 
predictions and content-based separately and then combining 
them or by adding collaborative-based capabilities to a 
content-based approach and vice-versa or by unifying the 
approaches into one model. Several studies that compare the 
performance of the hybrid with the pure collaborative and 
content-based methods demonstrated that the hybrid methods 
can provide more accurate recommendations.  
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Hybrid recommendation algorithms can be used to overcome 
problems like cold start problem and knowledge engineering 
bottleneck, sparsity problem that arise in recommendation 
scenarios. It demonstrates offline and online similarity 
computations for better scalability. 

Item-to-item collaborative filtering: - 

In this paper[1] the author has proposed a collaborative 
filtering algorithm based on items rather than users. 
Instead of matching users to similar customers, item-to-
item collaborative filtering matches the user’s purchased 
items to similar items, then in turn combining them to 
generate a recommendations list. A similar-items table is 
built to find items that customers tend to purchase 
together. We could build a product-to-product matrix by 
iterating through all item pairs and computing a similarity 
metric for each pair. It exposes the drawbacks of user-
based filtering like scalability and sparsity. The paper also 
introduces correlation based similarity. 

Content based filtering vs collaborative filtering:- 

In this paper[2] the author details the two most popular 
algorithms already present namely Content based filtering 
and Collaborative based filtering. The paper discusses the 
basics of recommendation systems and also gives a highly 
intuitive overview of how & why recommendation systems 
work the way they work. Collaborative filtering 
approaches build a model from a user's past behavior along 
with decisions that are similar which are made by other 
users and then these algorithms use that model to predict 
items that the user may mostly be interested to engage 
with. Content-based filtering algorithms make use of a 
series of characteristics of an item in order to recommend 
additional items with similar properties. Content-based 
filtering is another approach for recommender systems. 
These methods are based on user preferences and user’s 
past behavior in addition to description of the item and. 
The keywords are used to describe an item to indicate the 
item’s characteristics which are used for generating 
recommendations. These algorithms try to recommend 
items that are similar to those items that a user liked in the 
past. 

Fig 1: Collaborative filtering & content based filtering 

3. PROPOSED SYSTEM

The system makes use of two already present-tested 

recommendation algorithms mainly content based and 

collaborative item-item filtering algorithms. Behavioral events 

like search terms used, navigation-history, items bought, items 

rated and many other data points derived from user input are 

captured for feature extraction. 

The whole system is dependent on item-item similarities. This 

similarity computation is very expensive and so this similarity 

computation is done periodically or whenever a new item is 

introduced into the catalog. Two items similarity is directly 

proportional to the similarity score of these items given by the 

respective algorithm used to compute the result and so for two 

items there are two similarity scores one from content based 

recommendation and other from item-item collaborative 

filtering algorithm. These two scores are combined into a 

hybrid score which mandates the system on what to 

recommend to the user. Content based score denotes the item-

item similarity based on the item-attributes only. 

Collaborative based score denotes the similarity based on user 

ratings. 

This hybrid score is calculated as: 

hybridScore=contentScore+item-

itemCollaborativeScore*(avgRatingOftheTwoItems) 

Higher the hybrid score, higher the similarity between the two 

items. 



Fig 2: Hybrid recommendations 

Firstly, content based recommendation is applied on the whole 

dataset of the items resulting in a subset of similar items, 

similar to the items the user already used/rated. These subsets 

of similar items are then subjected to the item-item 

collaborative filtering algorithm and the corresponding scores 

are computed. Then finally, the hybrid scores of these items 

are computed and sorted accordingly and then the top-N items 

are recommended to the user. 

Fig 3:Approaches considered for the proposed system 

Green colour denotes the techniques used in the proposed 

system,where red denotes techniques that are not injected in 

the system. 

Reasons to have chosen Item-Item CF over User-User CF: 

● Works well with item-centric approach of the project

● Scales relatively better with increasing number of users

● Less space requirements than User-User CF

● Far easier to handle changing user preferences

Items can be recommended in two ways: 

1. By Item-Top similar items of just the given item are

recommended.

2. By User -All the similar items of the user-rated items

are aggregated and then recommended.

There are many advantages of using a hybrid system over 

choosing a specific algorithm only. As combining multiple 

systems facilitates us to eliminate disadvantages in one system 

by complimenting them with advantages of the other systems. 

3.2 HIGH LEVEL ARCHITECTURE 

Fig 4: Proposed System Architecture 

3.3 PROCESS 

The above figure represents the high-level architecture of the 

project. Here users can perform four key operations. They are: 

1.Get similar items.

2. Get user recommendations.

3.Adding rating to an item by a user.

4.Searching for an item by a user.

   
Recomme

ndation 
Technique

s   
Neighbour

hood
Based

   
Content 
Based

   
Collaborati
ve Based

   
User-User 

CF

   
Item-Item 

CF

   
Prediction

Based 



1.If the user has used some item and just wants the

recommendations to be based upon just that one item, then the

user can use up this functionality by supplying just the

identifier (title or Id) of that product only.

2.If the user wants recommendations based on his whole user

profile, he can just choose this option resulting in

recommendations that take note of all his ratings

comprehensively.

3.If the user wants to add ratings to an item, then he/she can

do so by inputting the id and rating to be allocated. This

activity is then captured by the system in subsequent similarity

matrix computations and the user recommendations for the

user gets altered accordingly.

4.If the user wants to search for an item in the item catalog,

then it can be done so by inputting the search term along with

userId.The search results for each user differ even for a same

search term as this results also factor in the user’s profile

along with search term provided at that instant.

Structure Of Item: 

● Each item is stored as vector of user-ratings

● Stored in the format of python dictionary

Eg: HarryPotterBook:{Bhaskar : 5,RajShekar: 2.5,Naveen:

4,Priyanka: 3}

● Stored in such a way as a user will not rate all products

available in the store, saving space.

Item-Item similarity score computation: 

● Similarity score is computed using Cosine similarity

● Here A and B are item vectors.

● We can use the Cosine Similarity algorithm to work out

the similarity between two things. We might then use the

computed similarity as part of a recommendation query.

● Higher the similarity score, greater the similarity.

● Score ranges from 0 to 1.

Item and User ratings : 

Table 1.Item and its user ratings 

Item/User RajShekar Priyanka Naveen Bhaskar 

HarryPotter 2 3 4 5 

Marvel Comics 4 4 1 1 

Narnia 2 4 3 4 

Naveen and Bhaskar seem to like HarryPotter and 

Narnia,whereas not like Marvel Comics at all.This pattern is 

captured by the system by making use of similarity matrices to 

recommend items to the users in the future. 

Similarity Matrix : 

Table 2. Similarity matrix generated using cosine similarity 

Book HarryPotter Marvel Comics Narnia 

HarryPotter 1 0.68 0.98 

Marvel Comics 0.68 1 0.56 

Narnia 0.98 0.56 1 

Since HarryPotter is more similar to Narnia the score ( 0.98 ) 

is more for them,whereas HarryPotter is not so similar to 

Marvel Comics ,the score(0.68 ) is relatively less when 

compared to the former. 

Ranking items by aggregating similarity scores per user: 

● For each item that the user has rated ,individual

recommendations are generated.

● All these recommendations are clubbed together,resulting

in a final list of items to be recommended.

● Top N items from the final list are shown to the user.



Technical Optimizations: 

● Missing data like summary and author details for a book

are fetched from public books API s.

● Some ratings in the dataset are padded with a constant

value to reduce bizarre scenarios.

● HashTables are used in the form of python dictionaries to

optimize similarity score computation time.

3.4 ALGORITHM: 

● The program contains two processes running

simultaneously.These are:

1. On User Demand Process

2. Background Periodic Process

● The background periodic process affects the On User

Demand Process directly.

● Both these processes work hand in hand together to yield

fine tuned recommendations.

Fig 5: Processes in the system 

On User Demand Process: 

● It starts execution when the users select any feature in the

system and start interacting with the system.

● In this process,the various content based and collaborative

similarity matrices are fetched which are generated by the

periodic process.

● These similarity matrices are taken up and based on the

appropriate feature selected by the user,the corresponding

items are retrieved.

● Top N similar items to a given item/user are filtered using

CFR Score from all the products.

● These top N items are sorted using their corresponding

CBR score.

● Then out of them,top K items are filtered and sorted using

hybrid score computed.

● Then these sub items are shown as recommendations

on the screen.

Fig 6: Steps involved in User Demand Process 

● With every step execution ,the no. of candidate items

for recommendations are reduced by an order of 10.

Fig 7. Order of shrinking of recommendations with each steps 

Periodic Process: 

● This process starts its execution when the server is first

started on.

● It runs once in a while, like once in a day as it is a very

computationally expensive process.

● It is responsible for generating similarity scores and

updating similarity matrices accordingly.

● These similarity scores are computed with the help of

item vectors which are generated inturn using the

underlying dataset.

Fig 8: Flow of periodic process 

PseudoCode:  

def getItemRecommendations(userId,num_of_items=100): 

    user=getUser(userId) 

    sim_items={} 

    for itemId in user['ratings'].keys(): 
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for itemId,cbr_score,cfr_score,matches,avg_rating in 

getHybridSimilarItemsForAItem(itemId): 

   if itemId in sim_items:         

sim_items[itemId]+=cbr_score+cfr_score*matches*avg_ratin

g 

else:        

sim_items[itemId]=cbr_score+cfr_score*matches*avg_rating 

    sim_items_list=[] 

    for itemId,score in sim_items.items(): 

        sim_items_list.append((itemId,score): 

    sim_items_list.sort(key=lambda x: (x[1]),reverse=True 

    return sim_items_list[:num_of_items] 

end procedure 

getItemRecommendations(userId): It generates item-

recommendations to users. 

The function getUser(userId) gets the user profile of the user 

with specified userId. 

The function get HybridSimilarItemsForAItem(itemId) gets 

the most similar items to the item identified by itemId based on 

the hybrid scores computed internally beforehand. 

4. RESULTS

DataSet used: Book-Crossing Dataset 

(http://www2.informatik.uni-freiburg.de/~cziegler/BX/) 

The Book-Crossing dataset comprises 3 tables. 

1.BX-Users

This file contains data about the users. Note that user IDs  are

anonymized and map to integers. Demographic data is

provided like location and age. Otherwise, these fields contain

NULL-values.

Entries-2,60,000

2.BX-Books

Books are identified by their respective ISBN. Invalid ISBNs

are removed from the dataset. The file contains columns

(`Book-Title`, `Book-Author`, `Year-Of-Publication`,

`Publisher`,’Genre’,’Description’), obtained from Amazon Web

Services. In the case of several authors, only the first author

details are provided.

Entries-15,450

3.BX-Book-Ratings

Contains the book rating information. Ratings are expressed

on a scale from 1-10, higher values denoting higher

appreciation.

Entries- 10,48,574

4.1 Item Recommendations For A User 

User with an user-id 9 is presented below,we can notice that 

the user is religious by the fact that the user has used 

‘Testament’ and ‘Beloved’. 

Observation: Directly similar books of type novels and of 

fiction and juvenile fiction genre are recommended similar to 

users previously used items. 



Hybrid recommendations are generated by including both 

CBR and CFR recommendations.Mostly religious and fiction 

novels are recommended as we can see that “Saving Faith” , 

“The Last Supper” and “Good Omens ” are listed in Hybrid 

recommendations. 

4.2 Getting similar items 

The item that the user selected for recommending similar 

items deals with court-trial genre. 

The CBR recommendations also seem to recommend titles 

relating to court genres like “Protect and Defend”,”The Final 

Judgement”,”The Laws Of Our Fathers”. 



It can be noticed that hybrid recommendations seem to 

retrieve titles that are indirectly related to court trial and 

biography genres whereas CBR and CFR are only able to 

capture very direct mappings. 

4.3 Adding ratings to items by users 

The user with user id 9 as of now has a profile incling to 

religious category. 

Let us try adding ratings to science fiction titles like Star Wars 

by user id 9.This act intends to make the user more of a Star 

Wars person. 

Now trying to get recommendations for user with user-id 9 

will result as in next shown: 



Now users get recommendations tending to fiction genre 

especially movies from the Star Wars franchise that the user 

has not yet used. 

Users get recommendations tending to fiction and some other 

unexplored genres that relate to Action using Hybrid 

Algorithm. 

4.4 Searching for item  

Searching for ‘star’ by user with user id - 9 

Since the user has previously rated items relating to the Star 

Wars franchise, the search term star results in search results 

including Star Wars titles. 

Now let’s search the same term ‘star’ using the user id 56 



Even though the same search term is used, different search 

results are shown.The user with user-id 56 is more of a 

Vampire and fictional stories person and so the star term 

results in titles tending to vampire category titles that relate to 

star entity. 

4.5 Performance Analysis 

Graph1: Convergence score trend 

Convergence score is a quantitative measure denoting the 

factor of convergence of content based and collaborative 

filtering recommendations into hybrid recommendations. 

It ranges from 0 to 1. Higher the score, higher the accuracy of 

recommendations. 

It is observed that as the no. of previously used items by a 

user increases the convergence score tends to approach 1 and 

the algorithm seems to yield accurate recommendations. 

5. CONCLUSION

Generalized approach to recommendations resulted in the 

system working well with wide range of domains and datasets. 

The system proposed was able to mix functionality of two 

popular recommendation algorithms with complementing 

features thereby making the recommendations work better 

even with less data and reduced the response time for 

generating recommendations considerably alongside working 

smoothly across different domains and datasets. 

Items available in the catalog are prone to increase 

exponentially with more and more users and providers getting 

interconnected on a daily basis in large numbers. And so the 

energy and time to be spent on the platform to choose a item 

by the user gets increased thereby reducing the quality of user 

experience, ultimately leading to the event where the user 

doesn’t use any item.And so there is an ever-growing need of 

recommendation systems that are better suitable to different 

domains and datasets ranging from music,movies,shopping 

data.There is an ever-growing need for recommendation 

systems that are better suitable to different domains. 

6. FUTURE WORK

User-User following subsystems can be implemented thereby 

making use of human intelligence along with machine 

intelligence. Trends in the overall system can be detected 

thereby amplifying the quality of recommendations. 

Item embeddings can be used in composition with the hybrid 

system for even better similarity score computation. 

Computation of items and users can be done remotely on a 

Hadoop server thereby reducing the initial load time and 

increasing performance of the overall system with incoming 

stream of user ratings and new product registrations. 

A questionnaire can be shown to the user periodically 

depending upon the user’s changing preferences of the items 

to better estimate the user’s present likings in the user profile 

generated.  
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